
Oracle PL/SQL Language
Pocket Reference

FOURTH EDITION

Steven Feuerstein, Bill Pribyl,
and Chip Dawes

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Oracle PL/SQL Language Pocket Reference, Fourth Edition
by Steven Feuerstein, Bill Pribyl, and Chip Dawes

Copyright © 2008 Chip Dawes, Steven Feuerstein, and Bill Pribyl.
All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Deborah Russell
and Mary Treseler

Production Editor: Mary Brady
Proofreader: Mary Brady

Indexer: Johnna VanHoose Dinse
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
April 1999: First Edition.
February 2003: Second Edition.
April 2004: Third Edition.
October 2007: Fourth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference series
designations, Oracle PL/SQL Language Pocket Reference, the image of ants,
and related trade dress are trademarks of O’Reilly Media, Inc. Many of the
designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book,
and O’Reilly Media, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps. Oracle® and all Oracle-based
trademarks and logos are trademarks or registered trademarks of Oracle
Corporation, Inc. in the United States and other countries. O’Reilly Media,
Inc. is independent of Oracle Corporation. Java and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. O’Reilly Media,
Inc. is independent of Sun Microsystems, Inc.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

ISBN-10: 0-596-51404-2
ISBN-13: 978-0-596-51404-4
[TM]

http://safari.oreilly.com
mailto:corporate@oreilly.com

iii

Contents

Introduction 1
Acknowledgments 1
Conventions 2

PL/SQL Language Fundamentals 2
PL/SQL Character Set 2
Identifiers 3
Boolean, Numeric, and String Literals 4
Numeric Literals 5
Datetime Interval Literals 6
Delimiters 6
Comments 8
Pragmas 8
Statements 9
Block Structure 9

Variables and Program Data 11
Scalar Datatypes 12
LOB Datatypes 18
Implicit Datatype Conversions 19
NULLs in PL/SQL 19
Declaring Variables 19
Anchored Declarations 22
Programmer-Defined Subtypes 23

iv | Contents

Conditional and Sequential Control 23
Conditional Control Statements 23
Sequential Control Statements 27

Loops 28
Simple Loop 29
Numeric FOR Loop 29
Cursor FOR Loop 30
WHILE Loop 30
REPEAT UNTIL Loop Emulation 31
EXIT Statement 31
CONTINUE Statement (Oracle Database 11g) 31
Loop Labels 33

Database Interaction 34
Sequences in PLSQL 34
Transaction Management 34
Autonomous Transactions 37

Cursors in PL/SQL 38
Explicit Cursors 38
Implicit Cursors 42
Dynamic Cursors 45
DBMS_SQL 46
SQL Injection and Bind Variables 47
Cursor Variables 48
Cursor Expressions 49

Exception Handling 50
Declaring Exceptions 51
Raising Exceptions 53
Scope 54
Propagation 54

Contents | v

Records in PL/SQL 56
Declaring Records 57
Referencing Fields of Records 58
Assigning Records 58
Records and DML 59
Nested Records 60

Collections in PL/SQL 61
Declaring a Collection 63
Initializing a Collection 64
Adding and Removing Elements 65
Nested Table Functions 65
Collection Methods 68
Collections and Privileges 71
Nested Collections 71
Bulk Binds 71

Built-in Functions and Packages 75
Built-in Functions 75
Built-in Regular Expression Functions 87
Built-in Packages 93

Stored Procedures and Functions 97
Procedures 98
Functions 99
Parameters 100
Local Programs 103
Program Overloading 104
Forward Declarations 106
Table Functions 106
Function Result Cache 107
Privileges and Stored PL/SQL 109

vi | Contents

Triggers 109
Creating Triggers 110
Trigger Predicates 114
DML Events 114
Compound DML Triggers 115
DDL Events 117
Database Events 117

Packages 117
Package Structure 118
Referencing Package Elements 120
Package Data 120
SERIALLY_REUSABLE Pragma 120
Package Initialization 121

Calling PL/SQL Functions in SQL 122
Calling a Function 123
Calling Packaged Functions in SQL 124
Column/Function Name Precedence 125

Object-Oriented Features 125
Object Types 126
Type Inheritance 128
Methods 128
Methods in Subtypes 132
Manipulating Objects in PL/SQL and SQL 133
Upcasting and Downcasting 135
Changing Object Types 138

Compilation 139
Compiling Stored PL/SQL Programs 140
Conditional Compilation 142
Compiler Warnings 145
Optimizing Compiler 147
Performing Native Compilation of PL/SQL 149

Contents | vii

Java Language Integration 152
Example 153
Publishing Java to PL/SQL 154
Data Dictionary 155

Index 157

1

Chapter 1

Oracle PL/SQL Language
Pocket Reference

Introduction
The Oracle PL/SQL Language Pocket Reference is a quick ref-
erence guide to the PL/SQL programming language, which
provides procedural extensions to the SQL relational data-
base language and a range of Oracle development tools.
Where a package, program, or function is supported only for
a particular version of the Oracle database (e.g., Oracle Data-
base 11g), we indicate this in the text.

The purpose of this pocket reference is to help PL/SQL users
find the syntax of specific language elements. It is not a self-
contained user guide; basic knowledge of the PL/SQL pro-
gramming language is assumed. For more information, see
the following O’Reilly books:

Oracle PL/SQL Programming, Fourth Edition, by Steven
Feuerstein with Bill Pribyl

Learning Oracle PL/SQL, by Bill Pribyl with Steven Feuerstein

Oracle PL/SQL Best Practices, Second Edition, by Steven
Feuerstein

Oracle in a Nutshell, by Rick Greenwald and David C.
Kreines

Acknowledgments
We are grateful to all those who helped in the preparation of
this book. In particular, thanks to Bryn Llewellyn for his

2 | Oracle PL/SQL Language Pocket Reference

input on this latest revision as well as the third edition.
Thanks as well to first-edition reviewers Eric J. Givler and
Stephen Nelson and to second- and third-edition reviewer
Jonathan Gennick. In addition, we appreciate all the good
work by the O’Reilly crew in editing and producing this
book.

Conventions
UPPERCASE indicates PL/SQL keywords, as well as certain
identifiers used by Oracle Corporation as built-in function
and package names.

Italic indicates filenames and directories, as well as the first
use of a term.

Constant width is used for code examples, literals, and
identifiers.

Constant width bold indicates user input in examples show-
ing an interaction.

[] enclose optional items in syntax descriptions.

{} enclose a list of items in syntax descriptions; you must
choose one item from the list.

| separates bracketed list items in syntax descriptions.

PL/SQL Language Fundamentals
This section summarizes the fundamental components of the
PL/SQL language: characters, identifiers, literals, delimiters,
use of comments and pragmas, and construction of state-
ments and blocks.

PL/SQL Character Set
The PL/SQL language is constructed from letters, digits,
symbols, and whitespace, as defined in the following table:

PL/SQL Language Fundamentals | 3

Characters are grouped together into four lexical units: iden-
tifiers, literals, delimiters, and comments.

Identifiers
Identifiers are names for PL/SQL objects such as constants,
variables, exceptions, procedures, cursors, and reserved
words. Identifiers have the following characteristics:

• Can be up to 30 characters in length

• Cannot include whitespace (space, tab, carriage return)

• Must start with a letter

• Can include a dollar sign ($), an underscore (_), and a
pound sign (#)

• Are not case-sensitive

Using PL/SQL’s reserved words as identifiers in your pro-
grams is not a good idea and can result in compilation or
runtime errors that are difficult to troubleshoot.

TIP

Earlier editions of this book included a list of reserved
words. However, Oracle Database 11g Release 1 has
more than 1600 reserved words as listed in the
V$RESERVED_WORDS data dictionary view. In our
testing we determined that more than 650 of these could
not be used as procedure names or variable names. Con-
sult V$RESERVED_WORDS for the full list of unsup-
ported identifiers, and avoid using these as program or
variable names.

Type Characters

Letters A–Z, a–z

Digits 0–9

Symbols ~!@#$%^&*()_-+=|[]{ }:;"'< >,.?/ ^

Whitespace space, tab, newline, carriage return

4 | Oracle PL/SQL Language Pocket Reference

If you enclose an identifier within double quotes, all but the
first of these rules are ignored. For example, the following
declaration is valid:

DECLARE
 "1 ^abc" VARCHAR2(100);
BEGIN
 IF "1 ^abc" IS NULL THEN ...
END;

Boolean, Numeric, and String Literals
Literals are specific values not represented by identifiers. For
example, TRUE, 3.14159, 6.63E-34, 'Moby Dick', and NULL
are all literals of type Boolean, number, or string. There are
no complex datatype literals as their values are internal rep-
resentations; complex types receive values through direct
assignment or via constructors. Unlike the rest of PL/SQL,
literals are case-sensitive. To embed single quotes within a
string literal, place two single quotes next to each other.

Starting with Oracle Database 10g, you can define your own
quoting mechanism for string literals in both your SQL and
PL/SQL statements. Use the characters q' (q followed by a
straight single quote) to designate the programmer-defined
delimiter for your string literal. Terminate the literal string
with the programmer-defined delimiter followed by a trailing
single quote—for example, q'!my string!'. NCHAR and
NVARCHAR delimiters are preceded by the letters nq, as in
nq'^nchar string^'. This technique can simplify your code
when consecutive single quotes appear within a string, such
as the literals in a SQL statement. If you define your delimiter
with one of the four bracketing characters ([{<, you must
use the righthand version of the bracketing character as the
closing delimiter. For example, q'[must be closed with]'.

See the following table for examples:

Literal Actual value

'That''s Entertainment!' That’s Entertainment!

q'#That's Entertainment!#' That’s Entertainment!

PL/SQL Language Fundamentals | 5

Numeric Literals
You may achieve improvements in runtime performance by
making explicit the datatype of numeric literals. You can do
so by including or excluding a decimal point or by using a
trailing f or d, as shown in the following table:

Oracle Database 10g introduced several special named
constants:

BINARY_FLOAT_NAN (Not a Number)
BINARY_FLOAT_INFINITY
BINARY_FLOAT_MAX_NORMAL
BINARY_FLOAT_MIN_NORMAL

'"The Raven"' "The Raven"

'TZ=''CDT6CST''' TZ='CDT6CST'

q'$TZ='CDT6CST'$' TZ='CDT6CST'

q'[TZ='CDT6CST']' TZ='CDT6CST'

'''' '

'''hello world''' 'hello world'

q'!'hello world'!' 'hello world'

'''''' "

q'['']' "

nq'<Price='£'>' Price='£'

nq'-WHERE name LIKE 'ñ'-' WHERE name LIKE 'ñ'

Literal Datatype

3.14159 NUMBER

42 INTEGER

0.0 NUMBER

3.14159f BINARY_FLOAT

3.14159d BINARY_DOUBLE

Literal Actual value

6 | Oracle PL/SQL Language Pocket Reference

BINARY_FLOAT_MAX_SUBNORMAL
BINARY_FLOAT_MIN_SUBNORMAL

as well as the BINARY_DOUBLE versions of these constants.

Datetime Interval Literals
The datetime interval datatypes, introduced in Oracle9i
Database, represent a chronological interval expressed in
terms of either years and months or days, hours, minutes,
seconds, and fractional seconds. Literals of these datatypes
require the keyword INTERVAL followed by the literal and
format string(s). The interval must go from a larger field to a
smaller one, so YEAR TO MONTH is valid, but MONTH
TO YEAR is not. See the following table for examples:

Delimiters
Delimiters are symbols with special meaning, such as :=
(assignment operator), || (concatenation operator), and ;
(statement delimiter). The following table lists the PL/SQL
delimiters:

Literal Actual value

INTERVAL '1-3' YEAR TO MONTH 1 year and 3 months later

INTERVAL '125-11' YEAR(3) TO
MONTH

125 years and 11 months later

INTERVAL '-18' MONTH 18 months earlier

INTERVAL '-48' HOUR 48 hours earlier

INTERVAL '7 23:15' DAY TO
MINUTE

7 days, 23 hours, 15 minutes later

INTERVAL '1 12:30:10.2' DAY
TO SECOND

1 day, 12 hours, 30 minutes, 10. 2 seconds
later

INTERVAL '12:30:10.2' HOUR TO
SECOND

12 hours, 30 minutes, 10.2 seconds later

Delimiter Description

; Terminator (for statements and declarations)

+ Addition operator

PL/SQL Language Fundamentals | 7

- Subtraction operator

* Multiplication operator

/ Division operator

** Exponentiation operator

|| Concatenation operator

:= Assignment operator

= Equality operator

<> and != Inequality operators

^= and ~= Inequality operators

< “Less-than” operator

<= “Less-than or equal to” operator

> “Greater-than” operator

>= “Greater-than or equal to” operator

(and) Expression or list delimiters

<< and >> Label delimiters

, (Comma) Item separator

' (Single quote) Literal delimiter

q' and ' Programmer-defined string literal delimiter

nq' and ' Programmer-defined NCHAR string literal delimiter

" (Double quote) Quoted literal delimiter

: Host variable indicator

% Attribute indicator

. (Period) Component indicator (as in record.field or package.element)

@ Remote database indicator (database link)

=> Association operator (named notation)

.. (Two periods) Range operator (used in the FOR loop)

-- Single-line comment indicator

/* and */ Multiline comment delimiters

Delimiter Description

8 | Oracle PL/SQL Language Pocket Reference

Comments
Comments are sections of code that exist to aid readability.
The compiler ignores them.

A single-line comment begins with a double hyphen (--) and
ends with a new line. The compiler ignores all characters
between the -- and the new line.

A multiline comment begins with slash asterisk (/*) and ends
with asterisk slash (*/). The /* */ comment delimiters also can
be used for a single-line comment. The following block dem-
onstrates both kinds of comments:

DECLARE
 -- Two dashes comment out only the physical line.
 /* Everything is a comment until the compiler
 encounters the following symbol */

You cannot embed multiline comments within a multiline
comment, so be careful during development if you comment
out portions of code that include comments. The following
code demonstrates this issue:

DECLARE
 /* Everything is a comment until the compiler
 /* This comment inside another WON'T work!*/
 encounters the following symbol. */

 /* Everything is a comment until the compiler
 -- This comment inside another WILL work!
 encounters the following symbol. */

Pragmas
The PRAGMA keyword is used to give instructions to the
compiler. There are five types of pragmas in PL/SQL:

AUTONOMOUS_TRANSACTION
Tells the compiler that the function, procedure, top-level
anonymous PL/SQL block, object method, or database
trigger executes in its own transaction space. See the
“Database Interaction” section for more information on
this pragma.

PL/SQL Language Fundamentals | 9

EXCEPTION_INIT
Tells the compiler to associate the specified error num-
ber with an identifier that has been declared an EXCEP-
TION in your current program or an accessible package.
See the “Exception Handling” section for more informa-
tion on this pragma.

INLINE
Tells the compiler whether calls to a subprogram should
be replaced with a copy of the subprogram. See the
“Optimizing Compiler” section for more information on
inline optimization.

RESTRICT_REFERENCES
Tells the compiler the purity level of a packaged pro-
gram. The purity level is the degree to which a program
does not read/write database tables and/or package vari-
ables. See the “Calling PL/SQL Functions in SQL” sec-
tion for more information on this pragma.

SERIALLY_REUSABLE
Tells the runtime engine that package data should not
persist between references. This is used to reduce per-
user memory requirements when the package data is
needed only for the duration of the call and not for the
duration of the session. See the “Packages” section for
more information on this pragma.

Statements
A PL/SQL program is composed of one or more logical state-
ments. A statement is terminated by a semicolon delimiter.
The physical end-of-line marker in a PL/SQL program is
ignored by the compiler, except to terminate a single-line
comment (initiated by the -- symbol).

Block Structure
Each PL/SQL program is a block consisting of a standard set
of elements, identified by keywords (see Figure 1). The block

10 | Oracle PL/SQL Language Pocket Reference

determines the scope of declared elements and how excep-
tions are handled and propagated. A block can be anony-
mous or named. Named blocks include functions,
procedures, packages, and triggers.

Here is an example of an anonymous block:

DECLARE
 today DATE DEFAULT SYSDATE;
BEGIN
 -- Display the date.
 DBMS_OUTPUT.PUT_LINE ('Today is ' || today);
END;

Here is a named block that performs the same action:

CREATE OR REPLACE PROCEDURE show_the_date
IS
 today DATE DEFAULT SYSDATE;
BEGIN
 -- Display the date.
 DBMS_OUTPUT.PUT_LINE ('Today is ' || today);
END show_the_date;

The following table summarizes the sections of a PL/SQL
block:

Figure 1. The PL/SQL block structure

Block Header

IS

Declaration Section

BEGIN

EXCEPTION

END;

Execution Section

Exception Section

Variables and Program Data | 11

Variables and Program Data
PL/SQL programs normally are used to manipulate database
information. You commonly do this by declaring variables
and data structures in your programs, and then working with
that PL/SQL-specific data.

A variable is a named instantiation of a data structure
declared in a PL/SQL block (either locally or in a package).
Unless you declare a variable as a CONSTANT, its value can
be changed at any time in your program.

The following table summarizes the different types of pro-
gram data.

Section Description

Header Required for named blocks. Specifies the way the program is called
by other PL/SQL blocks. Anonymous blocks do not have a header.
They start with the DECLARE keyword if there is a declaration
section, or with the BEGIN keyword if there are no declarations.

Declaration Optional; declares variables, cursors, TYPEs, and local programs
that are used in the block’s execution and exception sections.

Execution Optional in package and TYPE specifications; contains statements
that are executed when the block is run.

Exception Optional; describes error-handling behavior for exceptions raised
in the executable section.

Type Description

Scalar Variables made up of a single value, such as a number, date, or
Boolean.

Composite Variables made up of multiple values, such as a record, collection,
or instance of a user-defined object type. See the sections “Records
in PL/SQL,” “Collections in PL/SQL,” and “Object-Oriented
Features.”

Reference Logical pointers to values or cursors.

LOB Variables containing large object (LOB) locators.

12 | Oracle PL/SQL Language Pocket Reference

Scalar Datatypes
Scalar datatypes divide into four families: number, charac-
ter, datetime, and Boolean. Subtypes further define a base
datatype by restricting the values or size of the base datatype.

Numeric datatypes

Numeric datatypes represent real numbers, integers, and
floating-point numbers. They are stored as NUMBER, PLS_
INTEGER, and IEEE floating-point storage types.

Decimal numeric datatypes store fixed and floating-point
numbers of just about any size. They include the subtypes
NUMBER, DEC, DECIMAL, NUMERIC, FLOAT, REAL,
and DOUBLE PRECISION. The maximum precision of a
variable with type NUMBER is 38 digits, which yields a
range of values from 1.0E-129 through 9.999E125.

Variables of type NUMBER can be declared with precision
and scale, as follows:

NUMBER(precision, scale)

where precision is the number of digits, and scale is the num-
ber of digits to the right (positive scale) or left (negative
scale) of the decimal point at which rounding occurs. Legal
values for scale range from –84 to 127. The following table
shows examples of precision and scale:

Oracle provides a variety of datatypes to store 32-bit whole
numbers: BINARY_INTEGER, INTEGER, INT, SMALL-
INT, NATURAL, NATURALN, POSITIVE, POSITIVEN,

Declaration Assigned value Stored value

NUMBER 6.02 6.02

NUMBER(4) 8675 8675

NUMBER(4) 8675309 Error

NUMBER(12,5) 3.14159265 3.14159

NUMBER(12,-5) 8675309 8700000

Variables and Program Data | 13

SIGNTYPE, and PLS_INTEGER. Prior to Oracle Database
10g, all of these except PLS_INTEGER were manipulated
using the same C-language arithmetic library as the NUM-
BER datatype. The PLS_INTEGER datatype and, starting
with Oracle Database 10g, all NUMBER datatypes use the
speedier machine arithmetic.

Binary integer datatypes store signed integers in the range of
–231 + 1 to 231 – 1. The subtypes include NATURAL (0
through 231 – 1) and POSITIVE (1 through 231 – 1) together
with the NOT NULL variations NATURALN and POSI-
TIVEN. SIGNTYPE is restricted to three values (–1, 0, 1).
PLS_INTEGER is an unconstrained subtype (alias) of
BINARY_INTEGER.

SIMPLE_INTEGER (introduced in Oracle Database 11g) has
the same range as BINARY_INTEGER except that it does
not allow for NULL values and does not raise an exception if
an overflow occurs. For example, 2147483647 + 1 =
–2147483648 (note the negative value!). SIMPLE_INTEGER
datatypes can result in significantly faster execution speeds
when the PL/SQL code is compiled to native machine code.

IEEE 754-compliant floating-point numbers are available in
both SQL and PL/SQL. These subtypes are the single-
precision BINARY_FLOAT and the double-precision
BINARY_DOUBLE. Because these datatypes require less
memory and use native machine arithmetic, they perform
much better for scientific or engineering applications that are
computer-intensive or that require comparison to infinity or
Not a Number (NaN). These two datatypes have binary pre-
cision instead of the decimal precision used in the NUMBER
family. So, if you are developing financial applications that
are concerned with rounding errors or require decimal preci-
sion, you probably should not use these floating-point
datatypes.

14 | Oracle PL/SQL Language Pocket Reference

The following table lists the PL/SQL numeric datatypes with
ANSI and IBM compatibility. In this table:

• precision is the precision for the subtype.

• scale is the scale of the subtype.

• binary is the binary precision of the subtype.

Character datatypes

Character datatypes store alphanumeric text and are manipu-
lated by character functions. As with the numeric family,
there are several subtypes in the character family, shown in
the following table:

PL/SQL datatype Compatibility
Oracle database
datatype

DEC(precision,scale) ANSI NUMBER(precision,scale)

DECIMAL(precision,scale) IBM NUMBER(precision,scale)

DOUBLE PRECISION ANSI NUMBER

FLOAT(binary) ANSI, IBM NUMBER

INT ANSI NUMBER(38)

INTEGER ANSI, IBM NUMBER(38)

NUMERIC(precision,scale) ANSI NUMBER(precision,scale)

REAL ANSI NUMBER

SMALLINT ANSI, IBM NUMBER(38)

BINARY_FLOAT IEEE 754 BINARY_FLOAT

BINARY_ DOUBLE IEEE 754 BINARY_ DOUBLE

Family Description

CHAR Fixed-length alphanumeric strings. Valid sizes are 1 to 32767
bytes (which is larger than the database limit of 4000).

VARCHAR2 Variable-length alphanumeric strings. Valid sizes are 1 to 32767
bytes (which is larger than the database limit of 4000).

LONG Variable-length alphanumeric strings. Valid sizes are 1 to 32760
bytes. LONG is included primarily for backward compatibility.
CLOB is the preferred datatype for large character strings.

Variables and Program Data | 15

Unicode character datatypes

The standard WE8MSWIN1252 or WE8ISO8859P2 charac-
ter set does not support some languages, such as Chinese
and Greek. To support multiple languages, the database
allows two character sets—the database character set and a
Unicode character set, sometimes called the national charac-
ter set (NLS).

The two NLS datatypes, NCHAR and NVARCHAR2, are
used to represent data in the Unicode character set. NCHAR
values are fixed-length character data; the maximum length
is 32767 bytes. NVARCHAR2 values are variable-length
character data; the maximum length also is 32767 bytes.

Datetime datatypes

The datetime datatypes are DATE, TIMESTAMP, TIME-
STAMP WITH TIME ZONE, and TIMESTAMP WITH
LOCAL TIME ZONE. There are also two interval datatypes,
INTERVAL YEAR TO MONTH and INTERVAL DAY TO
SECOND.

RAW Variable-length binary strings. Valid sizes are 1 to 32767 bytes
(which is larger than the database limit of 2000). RAW data does
not undergo character set conversion when selected from a
remote database.

LONG RAW Variable-length binary strings. Valid sizes are 1 to 32760 bytes.
LONG RAW is included primarily for backward compatibility. BLOB
and BFILE are the preferred datatypes for large binary data.

ROWID Fixed-length binary data. Every row in a database has a physical
address or ROWID. A ROWID has four parts in base 64:

 OOOOOOFFFBBBBBBRRR
where:

• OOOOOO is the object number.
• FFFF is the absolute or relative file number.
• BBBBBB is the block number within the file.
• RRR is the row number within the block.

UROWID Universal ROWID. Variable-length hexadecimal string depicting a
logical, physical, or non-Oracle row identifier. Valid sizes are up to
4000 bytes.

Family Description

16 | Oracle PL/SQL Language Pocket Reference

DATE values are fixed-length, date-plus-time values. The
DATE datatype can store dates from January 1, 4712 B.C. to
December 31, 9999 A.D. Each DATE includes the century,
year, month, day, hour, minute, and second. Subsecond
granularity is not supported via the DATE datatype; use one
of the TIMESTAMP datatypes instead. The time portion of a
DATE defaults to midnight (12:00:00 a.m.) if it is not
included explicitly.

TIMESTAMP values store date and time to subsecond granu-
larity. The subsecond precision (the number of digits to the
right of the decimal) either defaults to 6 or is set to 0 through
9 digits by declaration, as in:

DECLARE
 mytime_declared TIMESTAMP(9);
 mytime_default TIMESTAMP; -- default 6 digits precision

TIMESTAMP WITH TIME ZONE values store date and
time values like a TIMESTAMP but also store the hourly off-
set from Coordinated Universal Time (UTC, which is essen-
tially equivalent to Greenwich Mean Time). As with
TIMESTAMP, the subsecond precision is 0 to 9 digits, either
declared or inherited from the default 6 digits of precision:

DECLARE
 mytime_declared TIMESTAMP(9) WITH TIME ZONE;
 mytime_default TIMESTAMP WITH TIME ZONE;

TIMESTAMP WITH LOCAL TIME ZONE values store date
and time values together with the UTC offset, like a TIME-
STAMP WITH TIME ZONE. The principal difference
between these timestamp datatypes occurs when values are
saved to or retrieved from a database table. TIMESTAMP
WITH LOCAL TIME ZONE values are converted to the
database time zone and saved without an offset. The values
retrieved from the database table are converted from the
database time zone to the session’s time zone.

The offset from UTC for both TIMESTAMP WITH TIME
ZONE and TIMESTAMP WITH LOCAL TIME ZONE can
be hours and minutes or a time zone region (found in the

Variables and Program Data | 17

V$TIMEZONE_NAMES data dictionary view) with the
optional daylight savings time name (also found in
V$TIMEZONE_NAMES). For example:

ALTER SESSION SET NLS_TIMESTAMP_TZ_FORMAT=
 'DD-Mon-YYYY HH24:MI:SS.FF TZR';
DECLARE
 my_tswtz TIMESTAMP(4) WITH TIME ZONE;
BEGIN
 my_tswtz := '31-MAR-2007 07:32:45.1234 US/Pacific';

INTERVAL YEAR TO MONTH values store a period of
time in years and months:

DECLARE
 myy2m INTERVAL YEAR TO MONTH;
BEGIN
 myy2m := INTERVAL '1-6' YEAR TO MONTH;

INTERVAL DAY TO SECOND values store a period of time
in days, hours, minutes, seconds, and fractional seconds:

DECLARE
 myd2s INTERVAL DAY TO SECOND;
BEGIN
 myd2s := INTERVAL '2 10:32:15.678' DAY TO SECOND;

BOOLEAN datatype

The BOOLEAN datatype can store one of only three values:
TRUE, FALSE, or NULL. BOOLEAN variables usually are
used in logical control structures such as IF...THEN or
LOOP statements.

The following truth tables show the results of logical AND,
OR, and NOT operations with PL/SQL’s three-value Bool-
ean model:

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

18 | Oracle PL/SQL Language Pocket Reference

LOB Datatypes
PL/SQL supports a number of large object (LOB) datatypes,
which can store objects of up to four gigabytes of data.
Unlike the scalar datatypes, variables declared for LOBs use
locators, or pointers to the actual data. LOBs are manipu-
lated in PL/SQL using the built-in package DBMS_LOB. The
LOB datatypes are:

BFILE
File locators pointing to read-only large binary objects in
operating system files. With BFILEs, the large objects are
outside the database.

BLOB
LOB locators that point to large binary objects inside the
database.

CLOB
LOB locators that point to large character (alphanu-
meric) objects inside the database.

NCLOB
LOB locators that point to large Unicode character
objects inside the database.

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

NOT (TRUE) NOT (FALSE) NOT (NULL)

FALSE TRUE NULL

Variables and Program Data | 19

Implicit Datatype Conversions
Whenever PL/SQL detects that a datatype conversion is neces-
sary, it attempts to change the values as required to perform
the operation. Figure 2 shows what types of implicit conver-
sions PL/SQL can perform. Note that not all values in each
datatype can be converted to another datatype. For example,
an attempt to convert BINARY_FLOAT_NAN to a number
datatype will raise an INVALID NUMBER exception.

NULLs in PL/SQL
PL/SQL represents unknown or inapplicable values as NULL
values. Because a NULL is unknown, a NULL is never equal
or not equal to anything (including another NULL value). In
addition, most functions return a NULL when passed a
NULL argument—the notable exceptions are NVL, NVL2,
CONCAT, and REPLACE. You cannot check for equality or
inequality to NULL; therefore, you must use the IS NULL or
IS NOT NULL syntax to check for NULL values.

Here is an example of the IS NULL syntax used to check the
value of a variable:

BEGIN
 IF myvar IS NULL
 THEN
 ...

Declaring Variables
Before you can use a variable, you must first declare it in the
declaration section of your PL/SQL block or in a package as
a global. When you declare a variable, PL/SQL allocates
memory for the variable’s value and names the storage loca-
tion so that the value can be retrieved and changed. The syn-
tax for a variable declaration is:

variable_name [CONSTANT] datatype [NOT NULL]
 [{ := | DEFAULT } initial_value];

20 | Oracle PL/SQL Language Pocket Reference

Figure 2. Implicit conversions attempted by PL/SQL

CH
AR

Fr
om

To

VA
RC

HA
R2

NC
HA

R

NV
AR

CH
AR

2

DA
TE

DA
TE

TI
M

E/
IN

TE
RV

AL

NU
M

BE
R

BI
NA

RY
_

FL
OA

T
BI

NA
RY

_
DO

UB
LE

LO
NG

RA
W

BL
OB

RO
W

ID

CL
OB

NC
LO

B

CH
AR

VA
RC

HA
R2

NC
HA

R
NV

AR
CH

AR
2

DA
TE

DA
TE

TI
M

E/
IN

TE
RV

AL
NU

M
BE

R
BI

NA
RY

_
FL

OA
T

BI
NA

RY
_

DO
UB

LE
BI

NA
RY

_
IN

TE
GE

R
PL

S_
IN

TE
GE

R
RA

W
SI

M
PL

E_
IN

TE
GE

R
LO

NG
RO

W
ID

BI
NA

RY
_

IN
TE

GE
R

PL
S_

IN
TE

GE
R

SI
M

PL
E_

IN
TE

GE
R

BL
OB

CL
OB

NC
LO

B

Variables and Program Data | 21

Constrained declarations

The datatype in a declaration can be constrained or uncon-
strained. Constrained datatypes have a size, scale, or preci-
sion limit that is less than the unconstrained datatype. For
example:

total_sales NUMBER(15,2); -- Constrained.
emp_id VARCHAR2(9); -- Constrained.
company_number NUMBER; -- Unconstrained.
book_title VARCHAR2; -- Not valid.

Constrained declarations require less memory than uncon-
strained declarations. Not all datatypes can be specified as
unconstrained. You cannot, for example, declare a variable
to be of type VARCHAR2. You must always specify the max-
imum size of a variable-length string.

Constants

The CONSTANT keyword in a declaration requires an ini-
tial value and does not allow that value to be changed. For
example:

min_order_qty NUMBER(1) CONSTANT := 5;

Default values

Whenever you declare a variable, it is assigned a default value
of NULL.* Initializing all variables is distinctive to PL/SQL; in
this way, PL/SQL differs from languages such as C and Ada. If
you want to initialize a variable to a value other than NULL,
you do so in the declaration with either the assignment opera-
tor (:=) or the DEFAULT keyword:

counter BINARY_INTEGER := 0;
priority VARCHAR2(8) DEFAULT 'LOW';

* There is an exception to this rule: associative arrays are not null when
declared, and there is no way to make them null. However, when
declared, associative arrays have no elements, a state unsurprisingly
known as “empty.”

22 | Oracle PL/SQL Language Pocket Reference

A NOT NULL constraint can be appended to the variable’s
datatype declaration to indicate that NULL is not a valid
value. If you add the NOT NULL constraint, you must
explicitly assign an initial value for that variable.

Anchored Declarations
Use the %TYPE attribute to anchor the datatype of a scalar
variable to either another variable or to a column in a data-
base table or view. Use %ROWTYPE to anchor a record’s
declaration to a cursor or table (see the later section,
“Records in PL/SQL,” for more details on the %ROWTYPE
attribute).

The following block shows several variations of anchored
declarations:

DECLARE
 tot_sales NUMBER(20,2);
 -- Anchor to a PL/SQL variable.
 monthly_sales tot_sales%TYPE;

 -- Anchor to a database column.
 v_ename employee.last_name%TYPE;

 CURSOR mycur IS
 SELECT * FROM employee;

 -- Anchor to a cursor.
 myrec mycur%ROWTYPE;

The NOT NULL clause on a variable declaration (but not on
a database column definition) follows the %TYPE anchoring
and requires anchored declarations to have a default in their
declaration. The default value for an anchored declaration
can be different from that for the base declaration:

tot_sales NUMBER(20,2) NOT NULL DEFAULT 0;
monthly_sales tot_sales%TYPE DEFAULT 10;

Conditional and Sequential Control | 23

Programmer-Defined Subtypes
PL/SQL allows you to define unconstrained scalar subtypes.
An unconstrained subtype provides an alias to the original
underlying datatype; for example:

CREATE OR REPLACE PACKAGE std_types
IS
 -- Declare standard types as globals.
 SUBTYPE dollar_amt_t IS NUMBER;
END std_types;

CREATE OR REPLACE PROCEDURE process_money
IS
 -- Use the global type declared above.
 credit std_types.dollar_amt_t;

A constrained subtype limits or constrains the new datatype
to a subset of the original datatype. For example, POSITIVE
is a constrained subtype of BINARY_INTEGER. The dec-
laration for POSITIVE in the STANDARD package is:

SUBTYPE POSITIVE IS BINARY_INTEGER RANGE 1.. 2147483647;

You can define your own constrained subtypes in your
programs:

PACKAGE std_types
IS
 SUBTYPE currency_t IS NUMBER (15, 2);
END;

Conditional and Sequential Control
PL/SQL includes conditional (IF, CASE) structures as well as
sequential control (GOTO, NULL) constructs.

Conditional Control Statements
There are several varieties of IF-THEN-ELSE and CASE
structures.

24 | Oracle PL/SQL Language Pocket Reference

IF-THEN combination
IF condition THEN

executable statement(s)
END IF;

For example:

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
END IF;

IF-THEN-ELSE combination
IF condition THEN

TRUE sequence_of_executable_statement(s)
ELSE

FALSE/NULL sequence_of_executable_statement(s)
END IF;

For example:

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
ELSE
 generate_response('BRONZE');
END IF;

IF-THEN-ELSIF combination
IF condition-1 THEN

statements-1
ELSIF condition-N THEN
statements-N

[ELSE
 ELSE statements]
END IF;

For example:

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
ELSIF priority_client THEN
 generate_response('SILVER');
ELSE
 generate_response('BRONZE');
END IF;

Conditional and Sequential Control | 25

CASE statement

There are two types of CASE statements: simple and
searched.

A simple CASE statement is similar to an IF-THEN-ELSIF
structure. The statement has a switch expression immedi-
ately after the keyword CASE. The expression is evaluated
and compared to the value in each WHEN clause. The first
WHEN clause with a matching value is executed, and then
control passes to the next statement following the END
CASE. For example:

CASE region_id
 WHEN 'NE' THEN
 mgr_name := 'MINER';
 WHEN 'SE' THEN
 mgr_name := 'KOOI';
 ELSE mgr_name := 'LANE';
END CASE;

If a switch expression evaluates to NULL, the ELSE case is
the only one that can possibly match; WHEN NULL will
never match because the database performs an equality com-
parison on the expressions.

Both the CASE statement and the CASE expression (see the
next section) should include an ELSE clause that will exe-
cute statements if no WHEN clause evaluates to TRUE,
because PL/SQL’s runtime engine will raise an exception if it
finds no matching expression.

The searched CASE statement does not have a switch;
instead, each WHEN clause has a complete Boolean expres-
sion. The first matching WHEN clause is executed, and con-
trol passes to the next statement following the END CASE;
for example:

CASE
 WHEN region_id = 'EAME' THEN
 mgr_name := 'SCHMIDT';
 WHEN division = 'SALES' THEN
 mgr_name := 'KENNEDY';
 ELSE mgr_name := 'GUPTA';
END CASE;

26 | Oracle PL/SQL Language Pocket Reference

CASE expression

There are also two types of CASE expressions: simple and
searched. You can use CASE expressions anywhere that
expressions are valid in your SQL or PL/SQL programs.

A simple CASE expression lets you choose an expression to
evaluate based on a scalar value that you provide as input. The
following example shows a simple CASE expression being
used with the built-in DBMS_OUTPUT package to output the
value of a Boolean variable. DBMS_OUTPUT.PUT_LINE is
not overloaded to handle Boolean types, so in this example,
the CASE expression converts the Boolean value in a charac-
ter string, which PUT_LINE can then handle:

DECLARE
 boolean_true BOOLEAN := TRUE;
 boolean_false BOOLEAN := FALSE;
 boolean_null BOOLEAN;

 FUNCTION boolean_to_varchar2 (flag IN BOOLEAN)
 RETURN VARCHAR2 IS
 BEGIN
 RETURN
 CASE flag
 WHEN TRUE THEN 'True'
 WHEN FALSE THEN 'False'
 ELSE 'NULL'
 END;
 END;

BEGIN
 DBMS_OUTPUT.PUT_LINE(boolean_to_varchar2
 (boolean_true));
 DBMS_OUTPUT.PUT_LINE(boolean_to_varchar2
 (boolean_false));
 DBMS_OUTPUT.PUT_LINE(boolean_to_varchar2
 (boolean_null));
END;

A searched CASE expression evaluates a list of expressions to
find the first one that evaluates to TRUE, and then returns
the results of an associated expression. In the following
example, a searched CASE expression returns the proper
bonus value for any given salary:

Conditional and Sequential Control | 27

DECLARE
 salary NUMBER := 20000;
 employee_id NUMBER := 36325;

 PROCEDURE give_bonus
 (emp_id IN NUMBER, bonus_amt IN NUMBER) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emp_id);
 DBMS_OUTPUT.PUT_LINE(bonus_amt);
 END;

BEGIN
 give_bonus(employee_id,
 CASE
 WHEN salary >= 10000 AND salary <=20000 THEN 1500
 WHEN salary > 20000 AND salary <= 40000 THEN 1000
 WHEN salary > 40000 THEN 500
 ELSE 0
 END);
END;

Sequential Control Statements
PL/SQL provides a GOTO statement and a NULL statement
to aid in sequential control operations.

GOTO

The GOTO statement performs unconditional branching to
a named label. You should only rarely use a GOTO. At least
one executable statement must follow the label (the NULL
statement can be this necessary executable statement). The
format of a GOTO statement is:

GOTO label_name;

For example:

BEGIN
 GOTO second_output;

 DBMS_OUTPUT.PUT_LINE('This line will never execute.');

 <<second_output>>
 DBMS_OUPUT.PUT_LINE('We are here!);
END

28 | Oracle PL/SQL Language Pocket Reference

There are several scope restrictions on where a GOTO can
branch control. A GOTO:

• Can branch out of an IF statement, LOOP, or subblock

• Cannot branch into an IF statement, LOOP, or subblock

• Cannot branch from one section of an IF statement to
another (from the IF-THEN section to the ELSE section
is illegal)

• Cannot branch into or out of a subprogram

• Cannot branch from the exception section to the execut-
able section of a PL/SQL block

• Cannot branch from the executable section to the excep-
tion section of a PL/SQL block, although a RAISE does
this

NULL

The NULL statement is an executable statement that does
nothing. It is useful when an executable statement must fol-
low a GOTO label or to aid readability in an IF-THEN-ELSE
structure. For example:

IF :report.selection = 'DETAIL' THEN
 exec_detail_report;
ELSE
 NULL;
END IF;

Loops
The LOOP construct allows you to execute a sequence of
statements repeatedly. There are three types of loops: simple
(infinite), FOR, and WHILE.

You can use the EXIT statement to break out of the LOOP
and pass control to the statement following the END LOOP.
Use the CONTINUE statement (Oracle Database 11g),
described later, to break out of the current loop iteration and
pass control to the next loop iteration.

Loops | 29

Simple Loop
LOOP

executable_statement(s)
END LOOP;

The simple loop should contain an EXIT or EXIT WHEN
unless you want it to execute infinitely. Use the simple loop
when you want the body of the loop to execute at least once.
For example:

LOOP
 FETCH company_cur INTO company_rec;
 EXIT WHEN company_cur%ROWCOUNT > 5 OR
 company_cur%NOTFOUND;
 process_company(company_cur);
END LOOP;

Numeric FOR Loop
FOR loop_index IN [REVERSE] lowest_number..highest_number
LOOP

executable_statement(s)
END LOOP;

The PL/SQL runtime engine automatically declares the loop
index a PLS_INTEGER variable; never declare a variable
with that name yourself. The lowest_number and highest_
number ranges can be variables, but are evaluated only
once—on initial entry into the loop. The REVERSE keyword
causes PL/SQL to start with the highest_number and dec-
rement down to the lowest_number. For example, this code:

BEGIN
 FOR counter IN 1 .. 4
 LOOP
 DBMS_OUTPUT.PUT(counter);
 END LOOP;
 DBMS_OUTPUT.NEW_LINE;

 FOR counter IN REVERSE 1 .. 4
 LOOP
 DBMS_OUTPUT.PUT(counter);
 END LOOP;
 DBMS_OUTPUT.NEW_LINE;
END;

30 | Oracle PL/SQL Language Pocket Reference

yields the following output:

1234
4321

Cursor FOR Loop
FOR loop_index IN [cursor_name | (SELECT statement)]
LOOP

executable_statement(s)
END LOOP;

The PL/SQL runtime engine automatically declares the loop
index as a record of cursor_name%ROWTYPE; never declare
a variable with that name yourself.

The cursor FOR loop automatically opens the cursor, fetches
all rows identified by the cursor, and then closes the cursor.
You can embed the SELECT statement directly in the cursor
FOR loop or use a previously declared cursor; for example:

FOR emp_rec IN emp_cur
LOOP
 IF emp_rec.title = 'Oracle Programmer'
 THEN
 give_raise(emp_rec.emp_id,30)
 END IF;
END LOOP;

The cursor FOR loop is an elegant, declarative construct (you
tell the database to fetch every row in the cursor without
specifying how to do it). Oracle Database 10g and above also
optimize it automatically to execute like a BULK COLLECT
statement. If, however, your cursor FOR loop contains Data
Manipulation Language (DML) statements, you may still
want to consider refactoring your code to explicitly use
BULK COLLECT and FORALL. See the “Bulk Binds” sec-
tion for information on these statements.

WHILE Loop
WHILE condition
LOOP

executable_statement(s)
END LOOP;

Loops | 31

Use the WHILE loop in cases where you may not want the
loop body to execute even once:

WHILE NOT end_of_analysis
LOOP
 perform_analysis;
 get_next_record;
 IF analysis_cursor%NOTFOUND AND next_step IS NULL
 THEN
 end_of_analysis := TRUE;
 END IF;
END LOOP;

REPEAT UNTIL Loop Emulation
PL/SQL does not directly support a REPEAT UNTIL con-
struct, but a modified simple loop can emulate one. The syn-
tax for this emulated REPEAT UNTIL loop is:

LOOP
executable_statement(s)

 EXIT WHEN boolean_condition;
END LOOP;

Use the emulated REPEAT UNTIL loop when executing iter-
ations indefinitely before conditionally terminating the loop.

EXIT Statement
EXIT [WHEN condition];

If you do not include a WHEN clause in the EXIT state-
ment, it will terminate the loop unconditionally. Otherwise,
the loop terminates only if the Boolean condition evaluates to
TRUE. The EXIT statement is optional and can appear any-
where in the loop.

CONTINUE Statement (Oracle Database 11g)
The CONTINUE statement terminates the current iteration
of a loop, passing control to the next iteration. The format of
a CONTINUE statement is:

CONTINUE label_name [WHEN boolean_expression];

32 | Oracle PL/SQL Language Pocket Reference

The optional label_name identifies which loop to terminate.
If no label_name is specified, the innermost loop’s current
iteration is terminated.

Like the EXIT statement, the CONTINUE statement is
optional and can appear anywhere in the loop. The CON-
TINUE statement can be used to pass control out of a loop,
optionally crossing loop boundaries, but cannot pass control
out across a procedure, function, or method boundary.

The following example uses CONTINUE to branch out of an
inner loop as well an outer loop:

DECLARE
 TYPE dow_tab_t IS TABLE OF VARCHAR2(10);
 dow_tab dow_tab_t := dow_tab_t('Sunday'
 ,'Monday','Tuesday','Wednesday','Thursday'
 ,'Friday','Saturday');
BEGIN
 <<day_loop>>
 FOR counter IN 2 .. 6 LOOP
 --Skip Wednesdays
 CONTINUE day_loop WHEN dow_tab(counter)='Wednesday';
 DBMS_OUTPUT.PUT_LINE (dow_tab(counter));
 END LOOP;
END;

This yields the following output:

Monday
Tuesday
Thursday
Friday

This example shows how control may be passed from within
an inner loop to the next iteration of an outer loop:

DECLARE
BEGIN
 <<outer_loop>>
 FOR outer_counter IN 1 .. 3 LOOP
 DBMS_OUTPUT.PUT_LINE(outer_counter);
 <<inner_loop>>
 FOR inner_counter IN 10 .. 15 LOOP
 CONTINUE outer_loop WHEN outer_counter > 1 AND
 inner_counter = 12;

Loops | 33

 DBMS_OUTPUT.PUT_LINE('...'||inner_counter);
 END LOOP;
 END LOOP;
END;

This yields the following output:

1
...10
...11
...12
...13
...14
...15
2
...10
...11
3
...10
...11

Loop Labels
Loops can be optionally labeled to improve readability and
execution control, as shown earlier in the discussion of the
GOTO statement. The label must appear immediately in
front of the statement that initiates the loop.

The following example demonstrates the use of loop labels to
qualify variables within a loop and also to terminate nested
and outer loops:

<<year_loop>>
FOR yearind IN 1 .. 20
LOOP
 <<month_loop>>
 LOOP
 ...
 IF year_loop.yearind > 10
 THEN
 EXIT year_loop;
 END IF;
 END LOOP month_loop;
END LOOP year_loop;

34 | Oracle PL/SQL Language Pocket Reference

Database Interaction
PL/SQL is tightly integrated with the underlying SQL layer of
the Oracle database. You can execute SQL statements
(UPDATE, INSERT, DELETE, MERGE, and SELECT)
directly in PL/SQL programs. You also can execute Data Def-
inition Language (DDL) statements through the use of
dynamic SQL. In addition, you can manage transactions with
COMMIT, ROLLBACK, and other Data Control Language
(DCL) statements.

Sequences in PLSQL
Sequences are frequently used to generate keys in an Oracle
database. To assign a sequence’s NEXTVAL or CURRVAL to
a PLSQL variable, select the pseudo-column from the table
DUAL, like this:

SELECT my_sequence.NEXTVAL INTO my_variable FROM dual;

Starting with Oracle Database 11g, you can reference the
sequence pseudo-columns anywhere in your programs in
which a number expression can appear. For example:

my_variable := my_sequence.NEXTVAL;

Transaction Management
The Oracle database provides a transaction model based on a
unit of work. The PL/SQL language supports most, but not
all, of the database model for transactions (you cannot, for
example, specify ROLLBACK FORCE). A transaction begins
with the first change to data and ends with either a COM-
MIT or a ROLLBACK. Transactions are independent of
PL/SQL blocks. Transactions can span multiple PL/SQL
blocks, or multiple transactions can be in a single PL/SQL
block. The PL/SQL-supported transaction statements include
COMMIT, ROLLBACK, SAVEPOINT, SET TRANSAC-
TION, and LOCK TABLE, described in the following
sections.

Database Interaction | 35

COMMIT
COMMIT [WORK] [comment_text];

COMMIT makes the database changes permanent and visi-
ble to other database sessions. The WORK keyword is
optional and aids only readability—it is rarely used. The
COMMENT text is optional and can be up to 50 characters
in length. It is germane only to in-doubt distributed (two-
phase commit) transactions. The database statement COM-
MIT FORCE, also for distributed transactions, is not sup-
ported in PL/SQL.

ROLLBACK
ROLLBACK [WORK] [TO [SAVEPOINT] savepoint_name];

ROLLBACK undoes the changes made in the current trans-
action either to the beginning of the transaction or to a save-
point. A savepoint is a named processing point in a
transaction, created with the SAVEPOINT statement. Roll-
ing back to a savepoint is a partial rollback of a transaction,
wiping out all changes (and savepoints) that occurred later
than the named savepoint.

SAVEPOINT
SAVEPOINT savepoint_name;

SAVEPOINT establishes a savepoint in the current transac-
tion. savepoint_name is an undeclared identifier. More than
one savepoint can be established within a transaction. If you
reuse a savepoint name, that savepoint is moved to the later
position and you will not be able to roll back to the initial
savepoint position.

SET TRANSACTION
SET TRANSACTION READ ONLY;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION USE ROLLBACK SEGMENT rbseg_name;

36 | Oracle PL/SQL Language Pocket Reference

SET TRANSACTION has three transaction control functions:

READ ONLY
This marks the beginning of a read-only transaction. It
indicates to the Oracle database that a read-consistent
view of the database is to be enforced for the transaction
(the default is for the statement). This read-consistent
view means that only changes committed before the
transaction begins are visible for the duration of the
transaction. The transaction is ended with either a COM-
MIT or a ROLLBACK. Only LOCK TABLE, SELECT,
SELECT INTO, OPEN, FETCH, CLOSE, COMMIT,
and ROLLBACK statements are permitted during a read-
only transaction. Issuing other statements, such as
INSERT or UPDATE, in a read-only transaction results
in an ORA-1456 error.

ISOLATION LEVEL SERIALIZABLE
Similar to a READ ONLY transaction in that transaction-
level read consistency is enforced rather than the default
statement-level read consistency. Serializable transac-
tions do allow changes to data, however.

USE ROLLBACK SEGMENT
If your database is using rollback segments for undo
management, as opposed to automatic undo manage-
ment, this statement tells the database to use the specifi-
cally named rollback segment rbseg_name. For example,
if we know that our large rollback segment is named rbs_
large, we can tell the database to use it by issuing the fol-
lowing statement before our first change to data:

SET TRANSACTION USE ROLLBACK SEGMENT rbs_large;

LOCK TABLE
LOCK TABLE table_list IN lock_mode MODE [NOWAIT];

This statement bypasses the implicit database row-level locks
by explicitly locking one or more tables in the specified
mode. The table_list is a comma-delimited list of tables. The

Database Interaction | 37

lock_mode is one of the following: ROW SHARE, ROW
EXCLUSIVE, SHARE UPDATE, SHARE, SHARE ROW
EXCLUSIVE, or EXCLUSIVE. The NOWAIT keyword speci-
fies that the Oracle database should not wait for a lock to be
released. If there is a lock when NOWAIT is specified, the
database raises the exception “ORA-00054: resource busy
and acquire with NOWAIT specified.” The default database
locking behavior is to wait indefinitely.

Autonomous Transactions
Autonomous transactions execute within a block of code as
separate transactions from the outer (main) transaction.
Changes can be committed or rolled back in an autonomous
transaction without committing or rolling back the main
transaction. Changes committed in an autonomous transac-
tion are visible to the main transaction, even though they
occur after the start of the main transaction. Those changes
committed in an autonomous transaction are visible to other
transactions as well. The database suspends the main trans-
action while the autonomous transaction executes:

PROCEDURE main IS
BEGIN
 UPDATE ... -- Main transaction begins here.
 DELETE ...
 at_proc; -- Call the autonomous transaction.
 SELECT ...
 INSERT ...
 COMMIT; -- Main transaction ends here.
END;

PROCEDURE at_proc IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN -- Main transaction suspends here.
 SELECT ...
 INSERT ... -- Autonomous transaction begins here.
 UPDATE ...
 DELETE ...
 COMMIT; -- Autonomous transaction ends here.
END; -- Main transaction resumes here.

38 | Oracle PL/SQL Language Pocket Reference

So, changes made in the main transaction are not visible to
the autonomous transaction, and if the main transaction
holds any locks that the autonomous transaction waits for, a
deadlock occurs. Using the NOWAIT option on UPDATE
statements in autonomous transactions can help to mini-
mize this kind of deadlock. Functions and procedures (local
program, standalone, or packaged), database triggers, top-
level anonymous PL/SQL blocks, and object methods can be
declared autonomous via the compiler directive PRAGMA
AUTONOMOUS_TRANSACTION. In addition, there must
be a COMMIT or a ROLLBACK at each exit point in the
autonomous program.

Cursors in PL/SQL
Every SQL statement executed by the Oracle database has a
private SQL area that contains information about the SQL
statement and the set of data returned. In PL/SQL, a cursor is
a name assigned to a specific private SQL area for a specific
SQL statement. There can be either static cursors, whose
SQL statement is determined at compile time, or dynamic
cursors, whose SQL statement is determined at runtime.

Static cursors are used only for DML statements (SELECT,
INSERT, UPDATE, DELETE, MERGE, or SELECT FOR
UPDATE). These static cursors may be explicitly declared
and named or may appear inline as implicit cursors.

Dynamic cursors are used for any type of valid SQL state-
ment including DDL (CREATE, TRUNCATE, ALTER) and
DCL (GRANT, REVOKE). Dynamic cursors are imple-
mented with the EXECUTE IMMEDIATE statement.

Explicit Cursors
Explicit cursors are SELECT statements that are DECLAREd
explicitly in the declaration section of the current block or in
a package specification. Use OPEN, FETCH, and CLOSE in
the execution or exception sections of your programs.

Cursors in PL/SQL | 39

Declaring explicit cursors

To use an explicit cursor, you must first declare it in the dec-
laration section of a block or package. There are three types
of explicit cursor declarations:

• A cursor without parameters; for example:
CURSOR company_cur
 IS
 SELECT company_id FROM company;

• A cursor that accepts arguments through a parameter
list; for example:

CURSOR company_cur (id_in IN NUMBER)
 IS
 SELECT name FROM company
 WHERE company_id = id_in;

• A cursor header that contains a RETURN clause in place
of the SELECT statement; for example:

CURSOR company_cur (id_in IN NUMBER)
RETURN company%ROWTYPE;

This last example shows that the cursor can be declared sepa-
rately from its implementation—for example, the header in a
package specification and the implementation in the package
body. See the later section, “Packages,” for more information.

Opening explicit cursors

To open a cursor, use the following syntax:

OPEN cursor_name [(argument [,argument ...])];

where cursor_name is the name of the cursor as declared in
the declaration section. The arguments are required if the
definition of the cursor contains a parameter list.

You must open an explicit cursor before you can fetch rows
from that cursor. When the cursor is opened, the processing
actually includes the parse, bind, open, and execute phases
of SQL statement execution. This OPEN processing includes
determining an execution plan, associating host variables
and cursor parameters with the placeholders in the SQL

40 | Oracle PL/SQL Language Pocket Reference

statement, determining the result set, and, finally, setting the
current row pointer to the first row in the result set.

When using a cursor FOR loop, the OPEN is implicit in the
FOR statement. If you try to open a cursor that is already
open, PL/SQL will raise an “ORA-06511: PL/SQL: cursor
already open” exception.

Fetching from explicit cursors

The FETCH statement places the contents of the current row
into local variables. To retrieve all rows in a result set, each
row needs to be fetched. The syntax for a FETCH statement
is:

FETCH cursor_name INTO record_or_variable_list;

where cursor_name is the name of the cursor as declared and
opened.

Closing explicit cursors

After all rows have been fetched, a cursor needs to be closed.
Closing a cursor enables the PL/SQL memory optimization
algorithm to release the associated memory at an appropri-
ate time. You can close an explicit cursor by specifying a
CLOSE statement as follows:

CLOSE cursor_name;

where cursor_name is the name of the cursor declared and
opened.

If you declare a cursor in a local anonymous, procedure, or
function block, that cursor will close automatically when the
block terminates. Package-based cursors must be closed
explicitly, or they stay open for the duration of your session.
Closing a cursor that is not open raises an INVALID_
CURSOR exception.

Cursors in PL/SQL | 41

Explicit cursor attributes

There are four attributes associated with cursors: ISOPEN,
FOUND, NOTFOUND, and ROWCOUNT. These
attributes can be accessed with the % delimiter to obtain
information about the state of the cursor. The syntax for a
cursor attribute is:

cursor_name%attribute

where cursor_name is the name of the explicit cursor.

The behaviors of the explicit cursor attributes are described
in the following table:

Frequently, a cursor attribute is checked as part of a loop
that fetches rows from a cursor, as shown here:

DECLARE
 caller_rec caller_pkg.caller_cur%ROWTYPE;
BEGIN
 OPEN caller_pkg.caller_cur;

Attribute Description

%ISOPEN TRUE if cursor is open.
FALSE if cursor is not open.

%FOUND INVALID_CURSOR is raised if cursor has not been OPENed.
NULL before the first fetch.
TRUE if record was fetched successfully.
FALSE if no row was returned.
INVALID_CURSOR if cursor has been CLOSEd.

%NOTFOUND INVALID_CURSOR is raised if cursor has not been OPENed.
NULL before the first fetch.
FALSE if record was fetched successfully.
TRUE if no row was returned.
INVALID_CURSOR if cursor has been CLOSEd.

%ROWCOUNT INVALID_CURSOR is raised if cursor has not been OPENed.
The number of rows fetched from the cursor.
INVALID_CURSOR if cursor has been CLOSEd.

42 | Oracle PL/SQL Language Pocket Reference

 LOOP
 FETCH caller_pkg.caller_cur into caller_rec;
 EXIT WHEN caller_pkg.caller_cur%NOTFOUND
 OR
 caller_pkg.caller_cur%ROWCOUNT > 10;

 UPDATE call
 SET caller_id = caller_rec.caller_id
 WHERE call_timestamp < SYSDATE;
 END LOOP;
 CLOSE caller_pkg.caller_cur;
END;

Implicit Cursors
Whenever a SQL statement is directly in the execution or
exception section of a PL/SQL block, you are working with
implicit cursors. SQL statements handled this way include
INSERT, UPDATE, DELETE, MERGE, and SELECT INTO.
Unlike explicit cursors, implicit cursors do not need to be
DECLAREd, OPENed, FETCHed, or CLOSEd.

SELECT statements handle the %FOUND and %NOT-
FOUND attributes differently from the way that explicit cur-
sors do. When an implicit SELECT statement does not return
any rows, PL/SQL immediately raises the NO_DATA_
FOUND exception, and control passes to the exception sec-
tion. When an implicit SELECT returns more than one row,
PL/SQL immediately raises the TOO_MANY_ROWS excep-
tion, and control passes to the exception section.

Implicit cursor attributes are referenced via the SQL cursor.
For example:

BEGIN
 UPDATE activity SET last_accessed := SYSDATE
 WHERE UID = user_id;

 IF SQL%NOTFOUND THEN
 INSERT INTO activity_log (uid,last_accessed)
 VALUES (user_id,SYSDATE);
 END IF
END;

Cursors in PL/SQL | 43

The following table lists the implicit cursor attributes:

Use the RETURNING clause in INSERT, UPDATE, and
DELETE statements to obtain data modified by the associ-
ated DML statement. This clause allows you to avoid an
additional SELECT statement to query the results of the
DML statement. For example:

BEGIN
 UPDATE activity SET last_accessed := SYSDATE
 WHERE UID = user_id
 RETURNING last_accessed, cost_center
 INTO timestamp, chargeback_acct;

SELECT FOR UPDATE clause

By default, the Oracle database locks rows as they are
changed. To lock all rows in a result set, use the FOR
UPDATE clause in your SELECT statement when you OPEN
the cursor, instead of when you change the data. Using the
FOR UPDATE clause does not require you to actually make

Attributes Description

SQL%ISOPEN Always FALSE because the cursor is opened implicitly
and closed immediately after the statement is
executed.

SQL%FOUND NULL before the statement.
TRUE if one or more rows were inserted, merged,
updated, or deleted, or if only one row was selected.
FALSE if no row was selected, merged, updated,
inserted, or deleted.

SQL%NOTFOUND NULL before the statement.
TRUE if no row was selected, merged, updated,
inserted, or deleted.
FALSE if one or more rows were inserted, merged,
updated, or deleted.

SQL%ROWCOUNT Number of rows affected by the cursor.

SQL%BULK_ ROWCOUNT Pseudo-associative array (index-by table) containing
the number of rows affected by the statements
executed in bulk bind operations. See the “Bulk Binds”
section for more information.

44 | Oracle PL/SQL Language Pocket Reference

changes to the data; it only locks the rows when opening the
cursor. These locks are released on the next COMMIT or
ROLLBACK. As always, these row locks do not affect other
SELECT statements unless they, too, are FOR UPDATE. The
FOR UPDATE clause is appended to the end of the SELECT
statement and has the following syntax:

SELECT ...
 FROM ...
 FOR UPDATE [OF column_reference] [NOWAIT];

where column_reference is a comma-delimited list of col-
umns that appear in the SELECT clause. The NOWAIT key-
word tells the Oracle database to not wait for other blocking
locks to be released. The default is to wait forever.

In the following example, only columns from the inventory
(pet) table are referenced FOR UPDATE, so no rows in the
dog_breeds (dog) table are locked when hounds_in_stock_cur
is opened:

DECLARE
 CURSOR hounds_in_stock_cur IS
 SELECT pet.stock_no, pet.breeder, dog.size
 FROM dog_breeds dog, inventory pet
 WHERE dog.breed = pet.breed
 AND dog.class = 'HOUND'
 FOR UPDATE OF pet.stock_no, pet.breeder;
BEGIN

WHERE CURRENT OF clause

UPDATE and DELETE statements can use a WHERE CUR-
RENT OF clause if they reference a cursor declared FOR
UPDATE. This syntax indicates that the UPDATE or
DELETE statement should modify the current row identified
by the FOR UPDATE cursor. The syntax is:

[UPDATE | DELETE] ...
 WHERE CURRENT OF cursor_name;

Cursors in PL/SQL | 45

By using WHERE CURRENT OF, you do not have to repeat
the WHERE clause in the SELECT statement. For example:

DECLARE
 CURSOR wip_cur IS
 SELECT acct_no, enter_date FROM wip
 WHERE enter_date < SYSDATE - 7
 FOR UPDATE;
BEGIN
 FOR wip_rec IN wip_cur
 LOOP
 INSERT INTO acct_log (acct_no, order_date)
 VALUES (wip_rec.acct_no, wip_rec.enter_date);
 DELETE FROM wip
 WHERE CURRENT OF wip_cur;
 END LOOP;
END;

Dynamic Cursors
Dynamic cursors are implemented with an EXECUTE IMME-
DIATE statement together with the OPEN FOR, FETCH, and
CLOSE statements. The EXECUTE IMMEDIATE statement
supports single-row queries and DDL, while the OPEN FOR,
FETCH, and CLOSE statements support dynamic multirow
queries. Here is the syntax for these statements:

EXECUTE IMMEDIATE sql_statement
 [INTO {variable [,variable ...] | record}]
 [USING [IN | OUT | IN OUT] bind_argument
 [,[IN | OUT | IN OUT] bind_argument ...]]
 [{RETURNING | RETURN} INTO bind_argument
 [,bind_argument]...];

The sql_statement is passed as an expression in the character
datatype family. In Oracle Database 11g, your sql_statement
can also be in a CLOB, thereby allowing you to execute
statements larger than 32K. The EXECUTE IMMEDIATE
statement parses and executes the SQL statement in a single
step. The EXECUTE IMMEDIATE statement requires a

46 | Oracle PL/SQL Language Pocket Reference

terminating semicolon, but the sql_statement must not* have a
trailing semicolon. For example:

EXECUTE IMMEDIATE 'TRUNCATE TABLE foo';

sql_stmt := 'UPDATE emp SET salary = :new_sal WHERE
 emp_id = :empno';
EXECUTE IMMEDIATE sql_stmt USING 75000, 123

The OPEN FOR statement assigns a multirow query to a
weakly typed cursor variable. The rows are then FETCHed
and the cursor CLOSEd:

DECLARE
 TYPE cv_typ IS REF CURSOR;
 cv cv_typ;
 laccount_no NUMBER;
 lbalance NUMBER;
BEGIN
 OPEN cv FOR
 'SELECT account_no, balance
 FROM accounts
 WHERE balance < 500';
 LOOP
 FETCH cv INTO laccount_no, lbalance;
 EXIT WHEN cv%NOTFOUND;
 -- Process the row.
 END LOOP;
 CLOSE cv;
END;

DBMS_SQL
The DBMS_SQL built-in package also enables dynamic SQL
execution within PL/SQL subprograms. For most dynamic
SQL requirements, native dynamic SQL (NDS) is easier and
much preferred. For a number of more complex scenarios,
however, DBMS_SQL is still the only choice. These scenar-
ios include:

* Well, most statements, anyway. CREATE OR REPLACE statements and
anonymous blocks do require semicolons.

Cursors in PL/SQL | 47

Dynamic SQL method 4
In this most complex type of dynamic SQL, you do not
know either the number of describes (columns in the
SELECT list) or binds (bind variables in the WHERE
clause). In these circumstances, DBMS_SQL provides
precisely the granularity of operations needed to imple-
ment the code. The DBMS_SQL.DESCRIBE_COLUMNS
procedure also comes in very handy for method 4.

Execute strings with more than 32K characters
Prior to Oracle Database 11g, EXECUTE IMMEDIATE
will not allow you to execute such large strings, but you
can execute these strings with DBMS_SQL.

Oracle Database 11g introduces the DBMS_SQL functions
TO_REFCURSOR and TO_CURSOR_NUMBER, which
allow you to switch back and forth between DBMS_SQL and
native dynamic SQL, taking advantage of the best of both
dynamic SQL techniques. See Oracle PL/SQL Programming
for more details on using DBMS_SQL.

SQL Injection and Bind Variables
SQL injection is a security vulnerability that can occur with
dynamic SQL when unintended (malicious) code is injected
into a program’s dynamic SQL statement. The best defense
against SQL injection is to use bind variables. This tech-
nique is generally recommended, in any case, because SQL
statements usually execute repeatedly, and the use of bind
variables reduces the need for parsing. Declare your dynamic
cursor with placeholders for bind variables (prefixed with a
colon) and then pass the bind arguments to the Oracle data-
base at runtime with a USING clause. The parsed form of the
statement will be reused from the shared pool, improving
performance. For example:

EXECUTE IMMEDIATE 'INSERT INTO hr.regions
 (region_id, region_name) VALUES (:r_id, :r_name)'
 USING id, name;

48 | Oracle PL/SQL Language Pocket Reference

Cursor Variables
A cursor variable is a data structure that points to a cursor
object, which in turn points to the cursor’s result set. You
can use cursor variables to more easily retrieve rows in a
result set from client and server programs. You also can use
cursor variables to hide minor variations in queries.

The syntax for a REF_CURSOR type (cursor variable) is:

TYPE ref_cursor_name IS REF CURSOR
 [RETURN record_type];

If you do not include a RETURN clause, you are declaring a
weak REF CURSOR. Cursor variables declared from weak
REF CURSORs can be associated with any query at runtime.
A REF CURSOR declaration with a RETURN clause defines
a strong REF CURSOR. A cursor variable based on a strong
REF CURSOR can be associated with queries whose result
sets match the number and datatype of the record structure
after the RETURN at runtime.

To use cursor variables, you must first create a REF CUR-
SOR type, then declare a cursor variable based on that type.

The following example shows the use of both weak and
strong REF CURSORs:

DECLARE
 -- Create a cursor type based on the company table.
 TYPE company_curtype IS REF CURSOR
 RETURN companies%ROWTYPE;

 -- Create the variable based on the REF CURSOR.
 company_cur company_curtype;

 -- And now the weak, general approach.
 TYPE any_curtype IS REF CURSOR;
 generic_curvar any_curtype;

The syntax to OPEN a cursor variable is:

OPEN cursor_name FOR SELECT_statement;

You can FETCH and CLOSE a cursor variable using the
same syntax as for explicit cursors.

Cursors in PL/SQL | 49

There are several restrictions on cursor variables:

• You cannot declare package-level cursor variables
because they do not have a persistent state. (You can
declare them in packaged procedures and functions,
however.)

• You cannot assign NULLs to a cursor variable nor can
you use comparison operators to test for equality,
inequality, or nullity.

• Neither database columns nor collections can store cur-
sor variables.

• You cannot use remote procedure calls (RPCs) to pass
cursor variables from one server to another.

Cursor Expressions
A cursor expression is a cursor that is used as a column
expression in the SELECT list of an explicit cursor. The syn-
tax for a cursor expression is:

CURSOR (subquery)

Cursor expressions can reduce the amount of redundant data
returned to a calling program over techniques that involve
joining the tables together. The cursor expression is opened
automatically when the parent row is fetched. Cursor expres-
sions can be nested as well. These nested cursors are closed
when one of the following occurs:

• The nested cursor is explicitly closed by the program.

• The parent cursor is closed.

• The parent cursor is re-executed.

• An exception is raised during the fetch of the parent row.

An example of a cursor expression follows:

DECLARE
 TYPE refcursor IS REF CURSOR;
 CURSOR order_cur IS
 SELECT o.order_date ,o.order_status

50 | Oracle PL/SQL Language Pocket Reference

 ,CURSOR(SELECT p.translated_name
 ,i.unit_price
 ,i.quantity
 FROM oe.order_items i
 ,oe.product_descriptions p
 WHERE i.product_id = p.product_id
 AND i.order_id = o.order_id)
 FROM oe.orders o
 WHERE order_date BETWEEN TO_DATE('01-Jan-03')
 AND TO_DATE('31-Jan-03');
 odate oe.orders.order_date%TYPE;
 ostatus oe.orders.order_status%TYPE;
 od_cur refcursor;
 tname oe.product_descriptions.translated_name%TYPE;
 price oe.order_items.unit_price%TYPE;
 qty oe.order_items.quantity%TYPE;
BEGIN
 OPEN order_cur;
 LOOP
 FETCH order_cur INTO odate, ostatus, od_cur;
 EXIT WHEN order_cur%NOTFOUND;
 LOOP
 FETCH od_cur INTO tname, price, qty;
 EXIT WHEN od_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(odate||','||ostatus
 ||','||tname||','||price||','||qty);
 END LOOP;
 END LOOP;
 CLOSE order_cur;
END;

Exception Handling
PL/SQL allows developers to raise and handle errors (excep-
tions) in a very flexible and powerful way. Each PL/SQL
block can have its own exception section in which excep-
tions can be trapped and handled (resolved or passed on to
the enclosing block). When an exception occurs (is raised) in
a PL/SQL block, its execution section immediately termi-
nates. Control is passed to the exception section. Every
exception in PL/SQL has an error number and error mes-
sage; some exceptions also have names.

Exception Handling | 51

Declaring Exceptions
Some exceptions have been predefined by Oracle in the
STANDARD package or other built-in packages, such as
UTL_FILE. See the following table for some of the most
common predefined exceptions. You also can declare your
own exceptions as follows:

DECLARE
exception_name EXCEPTION;

Error Named exception

ORA-00001 DUP_VAL_ON_INDEX

ORA-00051 TIMEOUT_ON_RESOURCE

ORA-00061 TRANSACTION_BACKED_ OUT

ORA-01001 INVALID_CURSOR

ORA-01012 NOT_LOGGED_ON

ORA-01017 LOGIN_DENIED

ORA-01403 NO_DATA_FOUND

ORA-01410 SYS_INVALID_ROWID

ORA-01422 TOO_MANY_ROWS

ORA-01476 ZERO_DIVIDE

ORA-01725 USERENV_COMMMITSCN_ ERROR

ORA-01722 INVALID_NUMBER

ORA-06500 STORAGE_ERROR

ORA-06501 PROGRAM_ERROR

ORA-06502 VALUE_ERROR

ORA-06504 ROWTYPE_MISMATCH

ORA-06511 CURSOR_ALREADY_OPEN

ORA-06530 ACCESS_INTO_NULL

ORA-06531 COLLECTION_IS_NULL

ORA-06532 SUBSCRIPT_OUTSIDE_LIMIT

ORA-06533 SUBSCRIPT_BEYOND_COUNT

52 | Oracle PL/SQL Language Pocket Reference

An exception can be declared only once in a block, but
nested blocks can declare an exception with the same name
as an outer block. If this multiple declaration occurs, scope
takes precedence over name when handling the exception.
The inner block’s declaration takes precedence over a global
declaration.

When you declare your own exception, you must RAISE it
explicitly. All declared exceptions have an error code of 1
and the error message “User-defined exception,” unless you
use the EXCEPTION_INIT pragma.

You can associate an error number with a declared excep-
tion with the PRAGMA EXCEPTION_INIT statement using
the following syntax:

DECLARE
exception_name EXCEPTION;

 PRAGMA EXCEPTION_INIT (exception_name, error_number);

where error_number is a literal value (variable references
are not allowed). This number can be an Oracle error, such
as –955 (object exists), or an error in the user-definable
range 20000 to –20999. For example, to execute the
dynamic SQL in the variable sql_stmt, ignoring any ORA-
00955 errors, run the following:

DECLARE
 ObjectExists EXCEPTION;
 PRAGMA EXCEPTION_INIT(ObjectExists,-955);
sql_stmt VARCHAR2(100) := 'CREATE TABLE mydual AS SELECT

 * FROM dual';
BEGIN
 EXECUTE IMMEDIATE sql_stmt;
-- Ignore ORA-955 errors (object already exists)
EXCEPTION WHEN ObjectExists THEN NULL;
END;

ORA-06548 NO_DATA_NEEDED

ORA-06592 CASE_NOT_FOUND

ORA-30625 SELF_IS_NULL

Error Named exception

Exception Handling | 53

Raising Exceptions
An exception can be raised in three ways:

• By the PL/SQL runtime engine

• By an explicit RAISE statement in your code

• By a call to the built-in function RAISE_APPLICATION_
ERROR

The syntax for the RAISE statement is:

RAISE exception_name;

where exception_name is the name of an exception that you
have declared, or an exception that is declared in the STAN-
DARD package. If you use the RAISE statement inside an
exception handler, you can omit the exception name to re-
raise the current exception:

RAISE;

This syntax is not valid outside the exception section.

The RAISE_APPLICATION_ERROR built-in function has
the following header:

RAISE_APPLICATION_ERROR (
num BINARY_INTEGER,
msg VARCHAR2,
keeperrorstack BOOLEAN DEFAULT FALSE);

where num is the error number (an integer between –20999
and -20000), msg is the associated error message, and keep_
errorstack controls whether any previous contents of the
error stack are preserved.

Starting with Oracle Database 10g Release 2, you can use the
built-in function DBMS_UTILITY.FORMAT_ERROR_
BACKTRACE to assist in identifying where in the call stack
an error occurred. Prior to Oracle Database 10g Release 2,
the only way to capture the full error stack and determine the
line number on which an error was raised was to let the
exception go unhandled.

54 | Oracle PL/SQL Language Pocket Reference

Scope
The scope of an exception section is that portion of the code
that is “covered” by the exception section. An exception han-
dler will handle, or attempt to handle, only those exceptions
that are raised in the executable section of the PL/SQL block.
Exceptions raised in the declaration or exception sections are
passed to the outer block automatically. Any line or set of
PL/SQL code can be placed inside its own block and given its
own exception section. This allows you to limit the propaga-
tion of an exception.

Propagation
Exceptions raised in a PL/SQL block propagate to an outer
block if they are unhandled or re-raised in the exception sec-
tion. When an exception occurs, PL/SQL looks for an excep-
tion handler that checks for the exception (or is the WHEN
OTHERS clause) in the current block. If a match is not found,
PL/SQL propagates the exception to the enclosing block or
calling program. This propagation continues until the excep-
tion is handled or propagated out of the outermost block,
back to the calling program. In this case, the exception is
“unhandled” and (1) stops the calling program, and (2)
causes an automatic rollback of any outstanding transactions.

Once an exception is handled, it will not propagate upward.
If you want to trap an exception, display a meaningful error
message, and have the exception propagate upward as an
error, you must re-raise the exception. The RAISE statement
can reraise the current exception or raise a new exception, as
shown here:

PROCEDURE delete_dept(deptno_in IN NUMBER)
IS
 still_have_employees EXCEPTION;
 PRAGMA EXCEPTION_INIT(still_have_employees, -2292);
BEGIN
 DELETE FROM dept
 WHERE deptno = deptno_in;

Exception Handling | 55

EXCEPTION
 WHEN still_have_employees
 THEN
 DBMS_OUTPUT.PUT_LINE
 ('Please delete employees in dept first');
 ROLLBACK;
 RAISE; --Re-raise the current exception.
END;

WHEN OTHERS clause

Use the WHEN OTHERS clause in the exception handler as
a catch-all to trap any exceptions that are not handled by
specific WHEN clauses in the exception section. If present,
this clause must be the last exception handler in the excep-
tion section. Specify this clause as follows:

EXCEPTION
 WHEN OTHERS
 THEN
 ...

SQLCODE, SQLERRM, and DBMS_UTILITY.FORMAT_
CALL_STACK

SQLCODE, SQLERRM, and DBMS_UTILITY.FORMAT_
CALL_STACK are built-in functions and procedures that
provide error code and message information for recent
exceptions. Use these programs inside the exception sec-
tion’s WHEN OTHERS clause to obtain information about
the current exception.

Oracle Corporation recommends that you not use
SQLERRM, because under some circumstances that func-
tion may truncate the error message string. Instead, use the
FORMAT_CALL_STACK procedure, like this:

CREATE TABLE err_test
 (widget_name VARCHAR2(100)
 ,widget_count NUMBER
 ,CONSTRAINT no_small_numbers CHECK
 (widget_count > 1000));
BEGIN
 INSERT INTO err_test (widget_name, widget_count)
 VALUES ('Athena',2);

56 | Oracle PL/SQL Language Pocket Reference

EXCEPTION
 WHEN OTHERS THEN
 IF SQLCODE = -2290
 AND DBMS_UTILITY.FORMAT_ERROR_STACK LIKE
 '%NO_SMALL_NUMBERS%'
 THEN
 DBMS_OUTPUT.PUT_LINE ('Widget_count is too
 small.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Exception not handled '
 ||'SQLcode='||SQLCODE);

DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.FORMAT_CALL_
 STACK);
 END IF;
END;

This produces the following output:

Widget_count is too small.

Starting with Oracle Database 10g Release 1, the DBMS_
UTILITY.FORMAT_ERROR_BACKTRACE function can be
used to display the full call stack, even if this procedure is
called from an exception handler in an outer scope.

Exceptions and DML

When an exception is raised in a PL/SQL block, it does not
roll back your current transaction, even if the block itself
issued an INSERT, UPDATE, or DELETE. You must issue
your own ROLLBACK statement if you want to clean up
your transaction as a result of the exception.

If your exception goes unhandled (propagates out of the
outermost block), however, most host environments, includ-
ing SQL*Plus, will then force an automatic, unqualified roll-
back of any outstanding changes in your session.

Records in PL/SQL
A PL/SQL record is a data structure composed of multiple
pieces of information called fields. To use a record, you
must first define it and declare a variable of this type. There

Records in PL/SQL | 57

are three types of records: table-based, cursor-based, and
programmer-defined.

Declaring Records
Define and declare records either in the declaration section of
a PL/SQL block or globally, via a package specification.

You do not have to explicitly define table-based or cursor-
based records, as they are implicitly defined with the same
structure as a table or a cursor. Variables of these types are
declared via the %ROWTYPE attribute. The record’s fields
correspond to the table’s columns or the columns in the
SELECT list. For example:

DECLARE
 -- Declare table-based record for company table.
 comp_rec company%ROWTYPE

 CURSOR comp_summary_cur IS
 SELECT c.company_id,SUM(s.gross_sales) gross
 FROM company c ,sales s
 WHERE c.company_id = s.company_id;

 -- Declare a cursor-based record.
 comp_summary_rec comp_summary_cur%ROWTYPE;

Programmer-defined records must be explicitly defined with
the TYPE statement in the PL/SQL declaration section or in a
package specification. Variables of this type then can be
declared as shown here:

DECLARE
 TYPE name_rectype IS RECORD(
 prefix VARCHAR2(15)
 ,first_name VARCHAR2(30)
 ,middle_name VARCHAR2(30)
 ,sur_name VARCHAR2(30)
 ,suffix VARCHAR2(10));

 TYPE employee_rectype IS RECORD (
 emp_id NUMBER(10) NOT NULL
 ,mgr_id NUMBER(10)
 ,dept_no dept.deptno%TYPE

58 | Oracle PL/SQL Language Pocket Reference

 ,title VARCHAR2(20)
 ,name name_rectype
 ,hire_date DATE := SYSDATE
 ,fresh_out BOOLEAN);

 -- Declare a variable of this type.
 new_emp_rec employee_rectype;
BEGIN

Referencing Fields of Records
Individual fields are referenced via dot notation:

record_name.field_name

For example:

employee.first_name

Individual fields within a record can be read from or written
to. They can appear on either the left or right side of the
assignment operator:

BEGIN
 insurance_start_date :=
 new_emp_rec.hire_date + 30;
 new_emp_rec.fresh_out := FALSE;
 ...

Assigning Records
An entire record can be assigned to another record of the
same type, but one record cannot be compared to another
record via Boolean operators. This is a valid assignment:

shipto_address_rec := customer_address_rec

This is not a valid comparison:

IF shipto_address_rec = customer_address_rec
 -- illegal
THEN
 ...
END IF;

The individual fields of the records need to be compared
instead.

Records in PL/SQL | 59

Values can be assigned to records or to the fields within a
record in four different ways:

• You can use the assignment operator to assign a value to
a field:

new_emp_rec.hire_date := SYSDATE;

• You can SELECT INTO a whole record or the individual
fields:

SELECT emp_id,dept,title,hire_date,college_recruit
 INTO new_emp_rec
 FROM emp
 WHERE surname = 'LI'

• You can FETCH INTO a whole record or the individual
fields:

FETCH emp_cur INTO new_emp_rec;
FETCH emp_cur
 INTO new_emp_rec.emp_id, new_emp_rec.name;

• You can assign all the fields of one record variable to
another record variable of the same type:

IF rehire THEN
 new_emp_rec := former_emp_rec;
ENDIF;

This aggregate assignment technique works only for
records declared with the same TYPE statement.

Records and DML
You insert into or update a database table using a
%ROWTYPE record without having to specify each field
individually in the following ways:

• Insert into a database table, using a %ROWTYPE record
and the VALUES keyword:

DECLARE
 emp_rec emp%ROWTYPE;
BEGIN
 SELECT employees_seq.NEXTVAL
 INTO emp_rec.empno FROM dual;

 INSERT INTO emp VALUES (emp_rec);
END;

60 | Oracle PL/SQL Language Pocket Reference

• Update a database table using a %ROWTYPE record and
the SET ROW keywords:

FOR emp_rec IN emp_cur
LOOP
 change_record_values(emp_rec);

 UPDATE emp SET ROW = emp_rec
 WHERE empno = emp_rec.empno;
END LOOP;

While these techniques allow you to write more elegant code
to interact with a database, you cannot use %ROWTYPE
records as bind variables in dynamic SQL.

Nested Records
Nested records are records contained in fields that are
records themselves. Nesting records is a powerful way to
normalize data structures and hide complexity within PL/
SQL programs. For example:

DECLARE
 -- Define a record.
 TYPE phone_rectype IS RECORD (
 area_code VARCHAR2(3),
 exchange VARCHAR2(3),
 phn_number VARCHAR2(4),
 extension VARCHAR2(4));

 -- Define a record composed of records.
 TYPE contact_rectype IS RECORD (
 day_phone# phone_rectype,
 eve_phone# phone_rectype,
 cell_phone# phone_rectype);

-- Declare a variable for the nested record.
 auth_rep_info_rec contact_rectype;
BEGIN

Collections in PL/SQL | 61

Collections in PL/SQL
There are three types of collections in PL/SQL: associative
arrays (formerly known as index-by tables or PL/SQL tables),
nested tables, and VARRAYs.

Associative arrays
Single-dimension, unbounded collections of homo-
geneous elements available only in PL/SQL, not in the
Oracle database. Associative arrays are initially sparse;
they have nonconsecutive subscripts. There are two types
of associative arrays: INDEX BY BINARY_INTEGER,
which allows you to associate a value with a BINARY_
INTEGER, and INDEX BY VARCHAR2, which allows
you to associate a value with a text string.

Nested tables
Single-dimension, unbounded collections of homo-
geneous elements available in both PL/SQL and the Ora-
cle database as a column of a table. Nested tables initially
are dense (they have consecutive subscripts), but they
can become sparse through deletions.

VARRAYs
Variable-size arrays. Single-dimension, bounded collec-
tions of homogeneous elements available in both PL/SQL
and the Oracle database. VARRAYs are never sparse.
Unlike nested tables, their element order is preserved
when you store and retrieve them from the database.

The following table compares these similar collection types:

Characteristic Associative array Nested table VARRAY

Dimensionality Single Single Single

Usable in SQL? No Yes Yes

Usable as a
column datatype
in a table?

No Yes; data stored
“out of line” (in a
separate table)

Yes; data typically
stored “inline” (in
the same table)

62 | Oracle PL/SQL Language Pocket Reference

Uninitialized
state

Empty (cannot be
NULL); elements
are undefined

Atomically null;
illegal to reference
elements

Atomically null;
illegal to reference
elements

Initialization Automatic, when
declared

Via constructor,
fetch, assignment

Via constructor,
fetch, assignment

In PL/SQL,
elements
referenced by

BINARY_INTEGER
(–2,147,483,647 ..
2,147,483,647) or
character string
(VARCHAR2);
maximum length of
VARCHAR2 is 30,
minimum length is
1

Positive integer
between 1 and
2,147,483,647
elements cannot
be referenced
unless they have
been initialized via
the constructor or
with the EXTEND
function

Positive integer
between 1 and
2,147,483,647;
elements cannot be
referenced unless
they have been
initialized via the
constructor or with
the EXTEND function

Sparse? Yes Initially no; after
deletions, yes

No

Bounded? No Can be extended Yes

Growing the
number of
elements in the
collection

Assign a value to
the element using a
new subscript

Elements are
added via the
constructor or later
via the EXTEND
method

Elements are added
via the constructor
or later via the
EXTEND method;
however, you
cannot EXTEND past
the upper bound

Shrinking the size
of the collection

Automatic TRIM function TRIM function

Can be compared
for equality?

No Yes (in Oracle
Database 10g and
later)
No (in Oracle9i
Database Release 2
and earlier)

No

Elements retain
ordinal position
and subscript
when stored and
retrieved from
the database

N/A; can’t be stored
in database

No Yes

Characteristic Associative array Nested table VARRAY

Collections in PL/SQL | 63

Declaring a Collection
Collections are implemented as TYPEs. As with any
programmer-defined type, you must first define the type;
then you can declare instances of that type. The TYPE defini-
tion can be stored in the database or declared in the PL/SQL
program. Each instance of the TYPE is a collection.

The syntax for declaring an associative array is:

TYPE type_name IS TABLE OF element_type [NOT NULL]
 INDEX BY {BINARY_INTEGER | VARCHAR2 (size_limit)};

The syntax for a nested table is:

[CREATE [OR REPLACE]] TYPE type_name { IS | AS } TABLE OF
element_type [NOT NULL];

The syntax for a VARRAY is:

[CREATE [OR REPLACE]] TYPE type_name { IS | AS } VARRAY |
 VARYING ARRAY (max_elements) OF element_type
 [NOT NULL];

The CREATE keyword defines the statement to be DDL and
indicates that this type will exist in the database. The optional
OR REPLACE keywords are used to rebuild an existing type,
preserving the privileges. type_name is any valid identifier that
will be used later to declare the collection. max_elements is the
maximum size of the VARRAY. element_type is the type of the
collection’s elements. All elements are of a single type, which
can be most scalar datatypes, an object type, or a REF object
type. If the elements are objects, the object type itself cannot
have an attribute that is a collection. Explicitly disallowed
collection datatypes are BOOLEAN, NCHAR, NCLOB,
NVARCHAR2, REF CURSOR, TABLE, and VARRAY.

NOT NULL indicates that a collection of this type cannot
have any null elements. However, the collection can be
atomically null (uninitialized).

64 | Oracle PL/SQL Language Pocket Reference

Initializing a Collection
Initializing an associative array is trivial—simply declaring it
also initializes it. Initializing a nested table or a VARRAY can
be done in any of three ways: explicitly with a constructor,
implicitly with a fetch from the database, or implicitly with a
direct assignment of another collection variable.

The constructor is a built-in function with the same name as
the collection. It constructs the collection from the elements
passed to it. The following example shows how you can cre-
ate a nested table of colors and explicitly initialize it to three
elements with a constructor:

DECLARE
 TYPE colors_tab_t IS TABLE OF VARCHAR2(30);
 colors_tab colors_tab_t :=
 colors_tab_t('RED','GREEN','BLUE');
BEGIN

The next example shows how you can create the nested table
of colors and implicitly initialize it with a fetch from the
database:

-- Create the nested table to exist in the database.
CREATE TYPE colors_tab_t IS TABLE OF VARCHAR2(32);

-- Create table with nested table type as column.
CREATE TABLE color_models
(model_type VARCHAR2(12)
,colors color_tab_t)
NESTED TABLE colors STORE AS
 color_model_colors_tab;

-- Add some data to the table.
INSERT INTO color_models
 VALUES('RGB',color_tab_t('RED','GREEN','BLUE'));
INSERT INTO color_models
 VALUES('CYMK',color_tab_t('CYAN','YELLOW',
 'MAGENTA' 'BLACK'));

-- Initialize a collection of colors from the table.
DECLARE
 basic_colors colors_tab_t;

Collections in PL/SQL | 65

BEGIN
 SELECT colors INTO basic_colors
 FROM color_models
 WHERE model_type = 'RGB';
...
END;

The third example shows how you can implicitly initialize
the table via an assignment from an existing collection:

DECLARE
 basic_colors Color_tab_t :=
 Color_tab_t ('RED','GREEN','BLUE');
 my_colors Color_tab_t;
BEGIN
 my_colors := basic_colors;
 my_colors(2) := 'MUSTARD';

Adding and Removing Elements
Elements in an associative array can be added simply by ref-
erencing new subscripts. To add elements to nested tables or
VARRAYs, you must first enlarge the collection with the
EXTEND function, and then you can assign a value to a new
element using one of the methods described in the previous
section.

Use the DELETE function to remove an element in a nested
table regardless of its position. The TRIM function also can
be used to remove elements, but only from the end of a col-
lection. To avoid unexpected results, do not use both
DELETE and TRIM on the same collection.

Nested Table Functions
Several collection (multiset) functions can be used to manipu-
late collections. These are summarized in the following table.
Most of these functions were new in Oracle Database 10g;
only CAST and MULTISET were available in earlier releases.
Note that COLLECT is valid only in a SQL statement; it can-
not be used, for example, in a PL/SQL assignment.

66 | Oracle PL/SQL Language Pocket Reference

Function Return value Description

= BOOLEAN Compares two nested tables and returns TRUE if
they have the same named type and
cardinality, and if the elements are equal.

<> BOOLEAN Compares two nested tables and returns FALSE
if they differ in named type, cardinality, or
equality of elements.

[NOT] IN () BOOLEAN Returns TRUE [FALSE] if the nested table to the
left of IN exists in the list of nested tables
specified in the parentheses.

CARDINALITY(x) NUMBER Returns the number of elements in VARRAY or
nested table x. Returns NULL if the collection is
atomically NULL (not initialized).

CAST(k AS t) TYPE t Changes the datatype of k to type t; used in
conjunction with COLLECT or MULTISET.

COLLECT NESTED TABLE Used in conjunction with CAST to map a column
to a collection.

MULTISET NESTED TABLE Used in conjunction with CAST to map a
subquery to a collection.

x MULTISET
EXCEPT
[DISTINCT] y

NESTED TABLE Performs a MINUS set operation on nested
tables x and y, returning a nested table whose
elements are in x, but not in y. The returned
nested table, x, and y must all be of the same
type. The DISTINCT keyword forces the
elimination of duplicates from the returned
nested table.

x MULTISET
INTERSECT
[DISTINCT] y

NESTED TABLE Performs an INTERSECT set operation on nested
tables x and y, returning a nested table whose
elements are in both x and y. The returned
nested table, x, and y must all be of the same
type. The DISTINCT keyword forces the
elimination of duplicates from the returned
nested table.

x MULTISET
UNION
[DISTINCT] y

NESTED TABLE Performs a UNION set operation on nested
tables x and y, returning a nested table whose
elements include all those in x as well as those
in y. The returned nested table, x, and y must all
be of the same type. The DISTINCT keyword
forces the elimination of duplicates from the
returned nested table.

SET(x) NESTED TABLE Returns nested table x without duplicate
elements.

Collections in PL/SQL | 67

The CAST function works together with the COLLECT and
MULTISET functions. MULTISET operates on a subquery.
COLLECT operates on a column in a SQL statement:

CREATE TYPE email_list_t AS TABLE OF VARCHAR2(64);

-- COLLECT operates on a column
SELECT CAST(COLLECT(cust_email)AS email_list_t)
FROM oe.customers;

-- which is equivalent to
SELECT CAST(MULTISET(SELECT cust_email
 FROM oe.customers)
 AS email_list_t)
FROM dual;

The following provides examples of the other nested table
functions, operators, and expressions:

DECLARE
 TYPE nested_type IS TABLE OF NUMBER;
 nt1 nested_type := nested_type(1,2,3);
 nt2 nested_type := nested_type(3,2,1);
 nt3 nested_type := nested_type(2,3,1,3);
 nt4 nested_type := nested_type(1,2,4);
 answer nested_type;
BEGIN
 answer := nt1 MULTISET UNION nt4; -- (1,2,3,1,2,4)
 answer := nt1 MULTISET UNION nt3; -- (1,2,3,2,3,1,3)
 answer := nt1 MULTISET UNION DISTINCT nt3; -- (1,2,3)
 answer := nt2 MULTISET INTERSECT nt3; -- (3,2,1)
 answer := nt2 MULTISET INTERSECT DISTINCT nt3;
 -- (3,2,1)

x IS [NOT] A SET BOOLEAN Returns TRUE [FALSE] if the nested table x is
composed of unique elements.

x IS [NOT]
EMPTY

BOOLEAN Returns TRUE [FALSE] if the nested table x is
empty.

e [NOT]
MEMBER [OF] x

BOOLEAN Returns TRUE [FALSE] if an expression e is a
member of the nested table x.

y [NOT]
SUBMULTISET
 [OF] x

BOOLEAN Returns TRUE [FALSE] if the nested table y
contains only elements that are also in the
nested table x.

Function Return value Description

68 | Oracle PL/SQL Language Pocket Reference

 answer := nt3 MULTISET EXCEPT nt2; -- (3)
 answer := nt3 MULTISET EXCEPT DISTINCT nt2; -- ()
 answer := SET(nt3); -- (2,3,1)
 IF (nt1 IS A SET) AND (nt3 IS NOT A SET) THEN
 DBMS_OUTPUT.PUT_LINE('nt1 has unique elements');
 DBMS_OUTPUT.PUT_LINE ('but nt3 does not');
 END IF;
 IF (nt3 MULTISET EXCEPT DISTINCT nt2) IS EMPTY THEN
 DBMS_OUTPUT.PUT_LINE('empty set');
 END IF;
 IF 3 MEMBER OF (nt3 MULTISET EXCEPT nt2) THEN
 DBMS_OUTPUT.PUT_LINE('3 is in the answer set');
 END IF;
 IF nt1 SUBMULTISET nt3 THEN
 DBMS_OUTPUT.PUT_LINE('nt1 is a subset of nt3');
 END IF;
 IF SET(nt3) IN (nt1,nt2,nt3) THEN
 DBMS_OUTPUT.PUT_LINE (
 'expression is IN the list of nested tables');
 END IF;
END;

Collection Methods
Several built-in functions (methods) are defined for all collec-
tions. These methods are called with dot notation:

collection_name.method_name[(parameters)]

The methods are listed in the following table:

Collection method Description

COUNT A function. Returns the current number of elements in
the collection. If a collection is atomically NULL, this
method raises an exception. Consider the CARDINALITY()
function instead.

DELETE [(i [, j])] A procedure. Removes element i or elements i through j
from a nested table or associative array. When called
with no parameters, removes all elements in the
collection. Reduces the COUNT if the element is not
already DELETEd. Does not apply to VARRAYs.

EXISTS (i) A function. Returns TRUE or FALSE to indicate whether
element i exists. If the collection is an uninitialized
nested table or VARRAY, returns FALSE.

Collections in PL/SQL | 69

The EXISTS function returns a BOOLEAN, and all other
functions and procedures return BINARY_INTEGER except
for collections indexed by VARCHAR2, which can return
character strings. All parameters are of the BINARY_
INTEGER type. Only EXISTS can be used on uninitialized
nested tables or VARRAYs. Other methods applied to these
atomically null collections will raise the COLLECTION_IS_
NULL exception.

DELETE and TRIM both remove elements from a nested
table, but TRIM also removes the placeholder, while
DELETE does not. This behavior may be confusing because
TRIM can remove previously DELETEd elements.

Here are examples of some collection methods in use with an
associative array:

DECLARE
 TYPE population_type IS
 TABLE OF NUMBER INDEX BY VARCHAR2(64);

EXTEND [(n [, i])] A procedure. Appends n elements to a collection,
initializing them to the value of element i. Both i and n
are optional, and n defaults to 1.

FIRST A function. Returns the lowest index in use. Returns NULL
when applied to empty initialized collections.

LAST A function. Returns the greatest index in use. Returns
NULL when applied to empty initialized collections.

LIMIT A function. Returns the maximum number of allowed
elements in a VARRAY. Returns NULL for associative
arrays and nested tables.

PRIOR (i) A function. Returns the index immediately before
element i. Returns NULL if i is less than or equal to FIRST.

NEXT (i) A function. Returns the index immediately after element
i. Returns NULL if i is greater than or equal to COUNT.

TRIM [(n)] A procedure. Removes n elements at the end of the
collection with the largest index. n is optional and
defaults to 1. If n is NULL, TRIM does nothing. Associative
arrays cannot be TRIMmed.

Collection method Description

70 | Oracle PL/SQL Language Pocket Reference

 continent_population population_type;
 howmany NUMBER;
 continent_name VARCHAR2(64);
BEGIN
 continent_population('Australia') := 30000000;
 -- Create new entry
 continent_population('Antarctica') := 1000;
 -- Replace old value
 continent_population('Antarctica') := 1001;
 continent_name := continent_population.FIRST;
 DBMS_OUTPUT.PUT_LINE (continent_name);
 DBMS_OUTPUT.PUT_LINE (
 continent_population(continent_name));
 continent_name := continent_population.LAST;
 DBMS_OUTPUT.PUT_LINE (continent_name);
 DBMS_OUTPUT.PUT_LINE
 (continent_population(continent_name));
END;

This example produces the following output:

Antarctica
1001
Australia
30000000

Here are examples of some collection methods in use with a
nested table:

DECLARE
 TYPE colors_tab_t IS TABLE OF VARCHAR2(30);
 my_list colors_tab_t :=
 colors_tab_t('RED','GREEN','BLUE');
 element BINARY_INTEGER;
BEGIN
 DBMS_OUTPUT.PUT_LINE('my_list has '
 ||my_list.COUNT||' elements');
 my_list.DELETE(2); -- delete element two
 DBMS_OUTPUT.PUT_LINE('my_list has '
 ||my_list.COUNT||' elements');

 FOR element IN my_list.FIRST..my_list.LAST
 LOOP
 IF my_list.EXISTS(element)
 THEN
 DBMS_OUTPUT.PUT_LINE(my_list(element)
 || ' Prior= '||my_list.PRIOR(element)

Collections in PL/SQL | 71

 || ' Next= ' ||my_list.NEXT(element));
 ELSE
 DBMS_OUTPUT.PUT_LINE('Element '|| element
 ||' deleted. Prior=
 '||my_list.PRIOR(element)
 || ' Next= '||my_list.NEXT(element));
 END IF;
 END LOOP;
END;

This example produces the following output:

my_list has 3 elements
my_list has 2 elements
RED Prior= Next= 3
Element 2 deleted. Prior= 1 Next= 3
BLUE Prior= 1 Next=

Collections and Privileges
As with other TYPEs in the database, you need the EXE-
CUTE privilege on that TYPE to use a collection type cre-
ated by another schema (user account) in the database. You
can use synonyms for user-defined TYPE names.

Nested Collections
Nested collections are collections contained in members that
are collections themselves. Nesting collections is a powerful
way to implement object-oriented programming constructs
within PL/SQL programs. For example:

CREATE TYPE books IS TABLE OF VARCHAR2(64);
CREATE TYPE our_books IS TABLE OF books;

Bulk Binds
You can use collections to improve the performance of SQL
operations executed iteratively by using bulk binds. Bulk
binds reduce the number of context switches between the
PL/SQL engine and the SQL engine. Two PL/SQL language
constructs implement bulk binds: FORALL and BULK COL-
LECT INTO.

72 | Oracle PL/SQL Language Pocket Reference

The syntax for the FORALL statement is:

FORALL bulk_index IN [lower_bound..upper_bound
 | INDICES OF collection_variable[BETWEEN lower_bound AND

upper_bound]
 | VALUES OF collection_variable]
 [SAVE EXCEPTIONS]

sql_statement;

bulk_index can be used only in the sql_statement and only as
a collection index (subscript). When PL/SQL processes this
statement, the whole collection—instead of each individual
collection element—is sent to the database server for pro-
cessing. To delete all the accounts in the collection named
inactives from the table ledger, do this:

FORALL i IN inactives.FIRST..inactives.LAST
 DELETE FROM ledger WHERE acct_no = inactives(i);

If nonconsecutive index values result from deletions, you will
need to use the INDICES OF syntax to skip over the deleted
elements:

FORALL i IN INDICES OF inactives
 DELETE FROM ledger WHERE acct_no = inactives(i);

If you are interested in the values of a sparse collection of
integers instead of the indices, you will need to use the VAL-
UES OF syntax:

FORALL i IN VALUES OF inactives_list
 -- inactives_list is a collection of index values from
 -- the inactives table which are earmarked for deletion
 DELETE FROM ledger WHERE acct_no = inactives(i);

The INDICES OF and VALUES OF keywords allow you to
specify a subset of rows in a driving collection that will be
used in the FORALL statement. To match the row numbers
in the data collection with the row numbers in the driving
collection, use the INDICES OF clause. To match the row
numbers in the data collection with the values found in the
defined rows of the driving collection, use the VALUES OF
clause.

Collections in PL/SQL | 73

The default is for the database to stop after the first excep-
tion encountered. Specify SAVE EXCEPTIONS to indicate
that processing should continue after encountering excep-
tions. The cursor attribute %BULK_EXCEPTIONS stores a
collection of records containing the errors. These records
have two fields, EXCEPTION_INDEX and EXCEPTION_
CODE, which contain the FORALL iteration (during which
the exception was raised) as well as the SQLCODE for the
exception. If no exceptions are raised, the SQL%BULK_
EXCEPTIONS.COUNT method returns 0. For example:

DECLARE
 TYPE NameList IS TABLE OF VARCHAR2(32);
 name_tab NameList := NameList('Pribyl'
 ,'Dawes','Feuerstein','Gennick'
 ,'Pribyl','Beresniewicz','Dawes','Dye');
 error_count NUMBER;
 bulk_errors EXCEPTION;
 PRAGMA exception_init(bulk_errors, -24381);
BEGIN
 FORALL indx IN name_tab.FIRST..name_tab.LAST
 SAVE EXCEPTIONS
 INSERT INTO authors (name) VALUES (name_tab(indx));
 -- authors has pk index on name
 EXCEPTION
 WHEN others THEN
 error_count := SQL%BULK_EXCEPTIONS.COUNT;
 DBMS_OUTPUT.PUT_LINE('Number of errors is ' ||
 error_count);
 FOR indx IN 1..error_count LOOP
 DBMS_OUTPUT.PUT_LINE('Error ' || indx || '
 occurred during '||'iteration ' ||
 SQL%BULK_EXCEPTIONS(indx).ERROR_INDEX);
 DBMS_OUTPUT.PUT_LINE('Error is ' ||
 SQLERRM
 (-SQL%BULK_EXCEPTIONS(indx).ERROR_CODE));
 END LOOP;
END;

Number of errors is 2
Error 1 occurred during iteration 5
Error is ORA-00001: unique constraint (.) violated
Error 2 occurred during iteration 7
Error is ORA-00001: unique constraint (.) violated

74 | Oracle PL/SQL Language Pocket Reference

The syntax for the BULK COLLECT INTO clause is:

BULK COLLECT INTO collection_name_list;

where collection_name_list is a comma-delimited list of col-
lections, one for each column in the SELECT. Collections of
records cannot be a target of a BULK COLLECT INTO
clause. However, the database does support retrieving a set
of typed objects and “bulk collecting” them into a collection
of objects.

The BULK COLLECT INTO clause can be used in SELECT
INTO, FETCH INTO, or RETURNING INTO statements.
For example:

DECLARE
 TYPE vendor_name_tab IS TABLE OF
 vendors.name%TYPE;
 TYPE vendor_term_tab IS TABLE OF
 vendors.terms%TYPE;
 v_names vendor_name_tab;
 v_terms vendor_term_tab;
BEGIN
 SELECT name, terms
 BULK COLLECT INTO v_names, v_terms
 FROM vendors
 WHERE terms < 30;
 ...
END;

The next function deletes products in an input list of catego-
ries, and the SQL RETURNING clause returns a list of
deleted products:

FUNCTION cascade_category_delete (categorylist clist_t)
RETURN prodlist_t
IS
 prodlist prodlist_t;
BEGIN
 FORALL aprod IN categorylist.FIRST..categorylist.LAST

DELETE FROM product WHERE product_id IN
 categorylist(aprod)
 RETURNING product_id BULK COLLECT INTO prodlist;
 RETURN prodlist;
END;

Built-in Functions and Packages | 75

You can use the SQL%BULK_ROWCOUNT cursor attribute
for bulk bind operations. It is like an associative array con-
taining the number of rows affected by the executions of the
bulk bound statements. The nth element of SQL%BULK_
ROWCOUNT contains the number of rows affected by the
nth execution of the SQL statement. For example:

FORALL i IN inactives.FIRST..inactives.LAST
 DELETE FROM ledger WHERE acct_no = inactives(i);
FOR counter IN inactives.FIRST..inactives.LAST
LOOP
 IF SQL%BULK_ROWCOUNT(counter) = 0
 THEN
 DBMS_OUTPUT.PUT_LINE('No rows deleted for '||
 counter);
 END IF;
END LOOP;

You cannot pass SQL%BULK_ROWCOUNT as a parame-
ter to another program or use an aggregate assignment to
another collection. %ROWCOUNT contains a summation
of all %BULK_ROWCOUNT elements. %FOUND and
%NOTFOUND reflect only the last execution of the SQL
statement.

Built-in Functions and Packages
Oracle Corporation supplies many built-in functions and
packages. The following sections describe those used most
often by PL/SQL developers.

Built-in Functions
The Oracle database provides dozens of built-in functions.
Although most of these functions are available to both SQL
and PLSQL, there are some notable exceptions. The
DECODE function, for example, is not available to PL/SQL
except within SQL statements included in your PL/SQL pro-
grams. The Oracle Database SQL Reference contains imple-
mentation details for the many functions defined to PL/SQL

76 | Oracle PL/SQL Language Pocket Reference

with the package STANDARD. You can view this package
specification within the file stdspec.sql located in the
ORACLE_HOME/rdbms/admin directory on the database
server.

Conversion functions

Built-in function Description

ASCIISTR(string) Converts string in any character set to the
ASCII version of string in the database
character set.

CAST(expression AS datatype) Converts expression to type datatype. (Use
as a powerful substitute for TO_DATE.)

CHARTOROWID(string) Converts string to a ROWID datatype.

CONVERT(string, destination_character_
set, source_character_set)

Converts string from the source character
set to the destination character set. (The
default source character set is the
database character set.)

FROM_TZ(timestamp_value, time_zone) Adds time zone information to a
TIMESTAMP value (converting it to a
TIMESTAMP WITH TIME ZONE value).

HEXTORAW(string) Converts string containing hexadecimal
characters to its raw equivalent.

MULTISET Maps a database table to a collection.

NUMTODSINTERVAL(n, interval_unit) Converts numeric expression n to an
INTERVAL DAY TO SECOND literal;
interval_unit can be DAY, HOUR, MINUTE,
or SECOND.

NUMTOYMINTERVAL(n ,interval_unit) Converts numeric expression n to an
INTERVAL YEAR TO MONTH literal;
interval_unit can be YEAR or MONTH.

RAWTOHEX(raw) Converts raw value to its hexadecimal
equivalent.

REFTOHEX(ref) Converts ref expression into a string
containing its hexadecimal equivalent.

ROWIDTOCHAR(rowid) Converts rowid to a VARCHAR2(18) string
equivalent.

ROWIDTONCHAR(rowid) Converts rowid to an NVARCHAR2(18)
string equivalent.

Built-in Functions and Packages | 77

TABLE Maps a collection to a database table
(inverse of MULTISET).

THE Maps a single column value in a single
row into a virtual database table.

TO_BINARY_FLOAT(expression [,fmt]) Converts number or string expression to a
BINARY_FLOAT; optionally use format
model fmt.

TO_BINARY_DOUBLE(expression [,fmt]) Converts number or string expression to a
BINARY_DOUBLE; optionally use format
model fmt.

TO_CHAR, TO_NCHAR(expression [,fmt]) Converts expression to a string
(VARCHAR2 or NVARCHAR2, respectively);
optionally use format model fmt.

TO_CLOB, TO_NCLOB(c) Converts c from a VARCHAR2,
NVARCHAR2, or NCLOB value to a CLOB (or
NCLOB).

TO_DATE(expression [,fmt]) Converts string expression to a DATE
datatype; optionally use format model
fmt.

TO_DSINTERVAL(string) Converts character string of a CHAR,
VARCHAR2, NCHAR, or NVARCHAR2
datatype to an INTERVAL DAY TO SECOND
type.

TO_LOB(c) Converts c from a LONG or LONG RAW to a
LOB.

TO_MULTI_BYTE(string) Where possible, converts single-byte
characters in the input string to their
multibyte equivalents.

TO_NUMBER(expression [,fmt]) Converts string or numeric (such as a
BINARY_FLOAT) expression to a NUMBER;
optionally use format model fmt.

TO_RAW(b) Converts b from a BLOB to a RAW.

TO_SINGLE_BYTE(string) Converts multibyte characters in string to
their corresponding single-byte
characters.

TO_TIMESTAMP(expression [,fmt]) Converts string expression to a value of
type TIMESTAMP; optionally use format
model fmt.

Built-in function Description

78 | Oracle PL/SQL Language Pocket Reference

String functions

TO_TIMESTAMP_TZ(expression [,fmt]) Converts string expression to a value of
type TIMESTAMP WITH TIMEZONE;
optionally use format model fmt.

TO_YMINTERVAL(string) Converts character string of a CHAR,
VARCHAR2, NCHAR, or NVARCHAR2
datatype to an INTERVAL YEAR TO MONTH
type.

TRANSLATE ... USING(string USING
CHAR_CS)

Converts string between the database
character set and the national character
set. Used for ANSI compatibility; mimics
TO_CHAR or TO_NCHAR functionality.

UNISTR(string) Translates string containing Unicode
encoding values (e.g., x00e5) to a
Unicode string literal in the database
Unicode character set.

Built-in function Description

ASCII(single_character) Returns the NUMBER code representing the
specified character in the database character
set.

ASCIISTR(string) Takes a string in any character set and
converts it into a string of ASCII characters.
Any non-ASCII characters are represented
using \XXXX Unicode notation.

CHR(code_location) Returns a VARCHAR2 character (length 1)
that corresponds to the location in the
collating sequence provided as a parameter
(opposite of ASCII). A variation of CHR is
useful when working with national
character set data.

CHR(code_location USING NCHAR_CS) Returns an NVARCHAR2 character from the
national character set.

COMPOSE(string) Takes a Unicode string as input and returns
that string in its fully normalized form.

CONCAT(string1, string2) Appends string2 to the end of string1.

Built-in function Description

Built-in Functions and Packages | 79

CONVERT(string, target_char_set) Converts a string from the database
character set to the specified target
character set. You may optionally specify a
source character set: CONVERT(string1,
target_char_set, source_character_set).

DECOMPOSE(string1 [CANONICAL]) Takes a Unicode string as input and returns
that string with any precomposed
characters decomposed into their separate
elements (the opposite of COMPOSE).
CANONICAL optionally gives a result that
may be reversed using COMPOSE.

GREATEST(string1, string2, ...) Takes one or more strings as input and
returns the string that would come last (i.e.,
sorts highest) if the inputs were sorted in
ascending order. (LEAST is the opposite of
GREATEST.)

INITCAP(string) Reformats the case of the string argument,
setting the first letter of each word to
uppercase and the remainder of the letters
to lowercase. A word is a set of characters
separated by a space or nonalphanumeric
character (such as # or _). For example,
INITCAP('this is lower') gives 'This Is Lower'.

INSTR(string1, string2[[, start_
position], nth])

Returns the position at which string2 is
found within string1; otherwise, returns 0.
start_position defines the starting position
and defaults to 1 if not present. With a
negative start_position, searching begins at
the end of string1 and works backward. nth
defines the ordinal occurrence (1st, 2nd,
3rd, etc.) of string2 in string1,and defaults to
1 if not present.

LEAST(string1, string2, ...) Takes one or more strings as input and
returns the string that would come first (i.e.,
the least) if the inputs were sorted in
ascending order. (GREATEST is the opposite
of LEAST.)

Built-in function Description

80 | Oracle PL/SQL Language Pocket Reference

LENGTH(string) Returns the number of characters in a string.
The variations LENGTHB, LENGTHC,
LENGTH2, and LENGTH4 return the number
of bytes, the number of Unicode characters,
the number of USC2 code points, and the
number of USC4 code points, respectively.
LENGTH returns NULL when passed a NULL,
and zero when passed a zero length (but
non-NULL) CLOB.

LOWER(string) Converts all letters in the specified string to
lowercase (the opposite of UPPER).

LPAD(string, padded_length
[,pad_string])

Returns the value from string, but padded
on the left with enough pad_string
characters to make the result padded_
length characters long. pad_string defaults
to a space if not present.

LTRIM(string [,trim_string]) Removes, or trims, any characters found in
trim_string from the leading edge of
string1. trim_string defaults to a space if not
present. (See also TRIM [ISO standard] and
RTRIM.)

NCHR(code_location) Returns an NVARCHAR2 character (length 1)
that corresponds to the location in the
national character set collating sequence
specified by code_location. (Provides the
same functionality as the CHR function’s
USING NCHAR_CS clause.)

NLS_INITCAP(string) Returns a version of string (which should be
of type NVARCHAR2 or NCHAR), setting the
first letter of each word to uppercase and
the remainder to lowercase. The return
value is a VARCHAR2. A word is a set of
characters separated by a space or
nonalphanumeric character.

NLS_INITCAP(string, ‘NLS_SORT=
sort_sequence_name‘)

You may specify a linguistic sorting
sequence that affects the definition of “first
letter,” as above. For sort_sequence_name,
specify a linguistic sort name as described in
the Oracle Database Globalization Support
Guide, Appendix A, (under “Linguistic
Sorts”).

Built-in function Description

Built-in Functions and Packages | 81

NLS_LOWER(string) and NLS_
LOWER(string, ‘NLS_SORT=sort_
sequence_name‘)

Lowercases a string in accordance with
language-specific rules. (See NLS_INITCAP
for how NLS_SORT can affect the results.)

NLS_UPPER(string) and NLS_
UPPER(string, ‘NLS_SORT=sort_
sequence_name‘)

Uppercases a string in accordance with
language-specific rules. (See NLS_INITCAP
for how NLS_SORT can affect the results.)

NLSSORT(string) and NLSSORT(string,
’NLS_SORT= sort_sequence_name ‘)

Returns a string of bytes that can be used to
sort a string value in accordance with
language-specific rules. The string returned
is of the RAW datatype.

REGEXP_INSTR, REGEXP_LIKE,
REGEXP_REPLACE, REGEXP_SUBSTR

See the following section, “Built-in Regular
Expression Functions,” for descriptions.

REPLACE(string, match_string,
replace_string)

Returns a string in which all occurrences of
match_string in string are replaced by
replace_string. Use REPLACE to search for a
pattern of characters and then change all
instances of that pattern in a single function
call.

RPAD(string, padded_length
[,pad_string])

Returns string padded on the right with
enough pad_string occurrences to make the
result padded_length characters long. pad_
string defaults to a space.

RTRIM(string [,trim_string]) Removes, or trims, any trim_string
characters from the right, or trailing edge, of
string. (See also TRIM [ISO standard] and
LTRIM.) trim_string defaults to a space.

SOUNDEX(string) Returns a character string that is the
“phonetic representation” of the argument.

SUBSTR(string, start, [length]) Returns a substring from string, beginning
with the character at position start and
going for length characters. If start is
negative, the beginning position is counted
from the end of the string rather than the
beginning. length defaults to the remainder
of string.

TO_CHAR(national_character_data) Converts data in the national character set
to its equivalent representation in the
database character set. (See also TO_
NCHAR.) You can also use TO_CHAR to
convert date and time values, as well as
numbers, into human-readable form.

Built-in function Description

82 | Oracle PL/SQL Language Pocket Reference

Numeric functions

TO_MULTI_BYTE(string) Translates single-byte characters to their
multibyte equivalents (the opposite of TO_
SINGLE_BYTE).

TO_NCHAR(database_character_data) Converts data in the database character set
to its equivalent representation in the
national character set. (See also TO_CHAR
and TRANSLATE…USING.)

TO_SINGLE_BYTE(string) Translates multibyte characters to their
single-byte equivalents (the opposite of
TO_MULTI_BYTE).

TRANSLATE (string, search_set,
replace_set)

Replaces every instance in string of a
character from search_set with the
corresponding character from replace_set.

TRANSLATE(text USING CHAR_CS) and
TRANSLATE(text USING NCHAR_CS)

Translates character data to either the
database character set (CHAR_CS) or the
national character set (NCHAR_CS). The
output datatype will be either VARCHAR2 or
NVARCHAR2, depending on whether you are
converting to the database or the national
character set, respectively.

TRIM ([LEADING | TRAILING | BOTH]
trim_character FROM string)

Returns a version of string that omits any
leading and trailing spaces. The optional
keywords LEADING FROM, TRAILING FROM,
and BOTH FROM cause the trimming of only
leading, trailing, or both leading and trailing
trim_characters. trim_character defaults to
a space.

UNISTR(string) Returns string converted into Unicode (the
opposite of ASCISTR). You can represent
nonprintable characters in the input string
using \XXXX Unicode notation.

UPPER(string) Returns a version of string with all letters
made uppercase.

Built-in function Description

ABS(n) Returns the absolute value of n.

ACOS(n) Returns the inverse cosine of n, where n
must be between π and 1. The returned
value is between 0 and π.

Built-in function Description

Built-in Functions and Packages | 83

ASIN(n) Returns the inverse sine, where n must be
between –1 and 1. The returned value is
between –π /2 and π /2.

ATAN(n) Returns the inverse tangent, where the
number n must be between –infinity and
infinity. The returned value is between –π /
2 and π /2.

ATAN2(n, m) Returns the inverse tangent of n/m, where
the numbers n and m must be between –
infinity and infinity. The returned value is
between –π and π. The result of
ATAN2(n,m) is defined to be identical to
ATAN(n/m).

BIN_TO_NUM(b1, b2,…bn) Converts the bit vector represented by b1
through bn into a number. Each of b1
through bn must evaluate to either 0 or 1.

BITAND(n, m) Performs a logical AND between n and m.

CEIL(n) Returns the smallest integer greater than or
equal to n.

COS(n) Returns the cosine of the angle n, which
must be expressed in radians.

COSH(n) Returns the hyperbolic cosine of n. If n is a
real number, and i is the imaginary square
root of –1, then the relationship between
COS and COSH can be expressed as follows:
COS (i * n) = COSH (n).

EXP(n) Returns the value e raised to the nth power,
where n is the input argument. The number
e (approximately equal to 2.71828) is the
base of the system of natural logarithms.

FLOOR(n) Returns the largest integer that is less than
or equal to n.

GREATEST(n1, n2,…n3) Returns the highest ordinal element from a
list of input numbers.

LEAST(n1, n2,…n3) Returns the lowest ordinal element from a
list of input numbers.

LN(n) Returns the natural logarithm of n. The
argument n must be greater than or equal
to 0.

Built-in function Description

84 | Oracle PL/SQL Language Pocket Reference

LOG(b, n) Returns the base b logarithm of n. The
argument n must be greater than or equal
to 0. The base b must be greater than 1.

MOD(n, m) Returns the remainder of n divided by m.
The remainder is computed using a formula
equivalent to n–(m*FLOOR(n/m)) when n
and m are both positive or both negative,
and n–(m*CEIL(n/m)) when the signs of n
and m differ.

NANVL(n, m) Returns m if n is NaN (not a number);
otherwise, returns n. The value returned will
be in the type of the argument with the
highest numeric precedence: BINARY_
DOUBLE, BINARY_FLOAT, or NUMBER, in
that order.

POWER(n, m) Raises n to the power m. If n is negative,
then m must be an integer.

REMAINDER(n, m) Returns the remainder of n divided by m.
The remainder is defined as follows: n –
(m*ROUND(n/m)).

ROUND(n) Returns n rounded to the nearest integer.

ROUND(n, m) Returns n rounded to m decimal places. The
value of m can be less than zero. A negative
value for m directs ROUND to round digits to
the left of the decimal point rather than to
the right.

SIGN(n) Returns –1, 0, or +1, depending on whether
n is less than zero, equal to zero, or greater
than zero.

SIN(n) Returns the sine of the specified angle,
which must be expressed in radians.

SINH(n) Returns the hyperbolic sine of n. If n is a real
number, and i is the imaginary square root
of –1, then the relationship between SIN
and SINH can be expressed as follows: SIN (i
* n) = i * SINH (n).

SQRT(n) Returns the square root n, which must be
greater than or equal to 0.

TAN(n) Returns the tangent of the angle n, which
must be expressed in radians.

Built-in function Description

Built-in Functions and Packages | 85

Datetime functions

TANH(n) Returns the hyperbolic tangent of n. If n is a
real number, and i is the imaginary square
root of –1, then the relationship between
TAN and TANH can be expressed as follows:
TAN (i * n) = i * TANH (n).

TRUNC(n [, p]) Truncates n to m decimal places. The
optional precision p defaults to 0 and, if
negative, truncates (zeros out) p places to
left of the decimal.

Built-in function Description

ADD_MONTHS(date, n) Adds n months to date, returning a DATE.

CAST(expression AS datatype) Converts expression to type datatype. You
can use CAST to convert among datetime
and string datatypes.

CURRENT_DATE Returns the current date and time as a DATE
value in the session time zone.

CURRENT_TIMESTAMP(p) Returns the current date and time as a
TIMESTAMP WITH TIME ZONE value in the
session time zone. The optional precision p
specifies the subsecond number of digits to
the right of the decimal and defaults to 6.

DBTIMEZONE Returns the time zone offset (from UTC) of
the database time zone in the form of a
character string.

EXTRACT(element FROM expression) Returns the value of a specific datetime
element from the datetime expression. The
element can be one of YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, TIMEZONE_HOUR,
TIMEZONE_MINUTE, TIMESONE_REGION, or
TIMEZONE_ABBR.

FROM_TZ(ts, tz) Adds time zone tz to TIMESTAMP ts,
converting it to a TIMESTAMP WITH TIME
ZONE.

LAST_DAY(expression) Returns the last day in the month
containing the DATE expression.

Built-in function Description

86 | Oracle PL/SQL Language Pocket Reference

LOCALTIMESTAMP(p) Returns the current date and time as a
TIMESTAMP value in the local time zone.
The optional precision p specifies the
subsecond number of digits to the right of
the decimal.

MONTHS_BETWEEN(end_date,
start_date)

Calculates the number of months between
start_date and end_date.

NEW_TIME(date,tz1,tz2) Translates the date value from time zone tz1
to tz2. Included for backward compatibility;
consider using a TIMESTAMP WITH
TIMEZONE datatype instead.

NEXT_DAY(date,dow) Returns the DATE of the first dow weekday
that is later than date.

NUMTODSINTERVAL(n, unit) Converts number n representing unit
number to a value of type INTERVAL DAY TO
SECOND. unit can be one of DAY, HOUR,
MINUTE, or SECOND.

NUMTOYMINTERAL(n, unit) Converts number n representing unit
number to a value of type INTERVAL YEAR
TO MONTH. unit can be one of YEAR or
MONTH.

ROUND(date, fmt) Returns date rounded to the optional format
model fmt level of granularity. If fmt is not
specified, date is rounded to the nearest
day.

SESSIONTIMEZONE Returns the time zone offset (from UTC) of
the session time zone in the form of a
character string.

SYSDATE Returns the current date and time from the
Oracle database server as a DATE value.

SYS_EXTRACT_UTC(dt) Converts the TIMESTAMP WITH TIME ZONE
value dt to a TIMESTAMP having the same
date and time, but normalized to UTC.

SYSTIMESTAMP Returns the current date and time from the
Oracle database server as a TIMESTAMP
WITH TIME ZONE value.

TO_CHAR(dt, fmt) Converts the datetime dt to a string using
optional format model fmt, which defaults
to the session NLS_DATE_FORMAT.

Built-in function Description

Built-in Functions and Packages | 87

Built-in Regular Expression Functions
The Oracle database supports the use of regular expressions
via five built-in functions: REGEXP_COUNT (new in Oracle
Database 11g), REGEXP_INSTR, REGEXP_LIKE, REGEXP_
REPLACE, and REGEXP_SUBSTR. For more details, see the
Oracle Regular Expressions Pocket Reference, by Jonathan
Gennick and Peter Linsley (O’Reilly).

TO_DATE(string, fmt) Converts string to a DATE; optionally use
format model fmt, which defaults to the
session NLS_DATE_FORMAT.

TO_DSINTERVAL(string) Converts the character string representation
of an interval expressed in days, hours,
minutes, and seconds to a value of
INTERVAL DAY TO SECOND.

TO_TIMESTAMP(string, fmt) Converts the character string representation
of a date and time to a value of type
TIMESTAMP; optionally use format model
fmt, which defaults to the session NLS_
DATE_FORMAT.

TO_TIMESTAMP_TZ(string, fmt) Converts the character string representation
of a date and time to a value of type
TIMESTAMP WITH TIME ZONE; optionally use
format model fmt, which defaults to the
session NLS_TIMESTAMP_FORMAT.

TO_YMINTERVAL(string) Converts the character string representation
of an interval expressed in years and months
to a value of INTERVAL YEAR TO MONTH.

TRUNC(date,fmt) Truncates the date value to format model
fmt level of granularity. The default
granularity is day.

TZ_OFFSET(tz) Returns the time zone offset from UTC for tz,
where tz is a time zone name, a time zone
offset, or the keywords SESSIONTIMEZONE
or DBTIMEZONE.

Built-in function Description

88 | Oracle PL/SQL Language Pocket Reference

Metacharacters

Regular expressions are found in Unix utilities such as grep,
sed, and the ex editor, in the Perl scripting language, and in
many other tools. Regular expressions are a powerful and
popular means of processing text, mainly because they use
metacharacters to facilitate searching for strings. The meta-
characters supported by the database are shown in the fol-
lowing table:

Pattern
metacharacter Description

* Asterisk. Matches zero or more occurrences.

+ Plus sign. Matches one or more occurrences.

? Question mark. Matches zero or one occurrence.

^ Caret. Matches beginning of line.

$ Dollar sign. Matches end of line.

. Period. Matches any single character.

\ Backslash. Treats the following metacharacter as a nonspecial
character.

{m} Curly braces. Matches exactly m times.

{ m,} Curly braces. Matches at least m times.

{ m, n } Curly braces. Matches at least m times, but no more than n times.

[] Square brackets. Matches any of the characters in the square
brackets.

| Vertical bar. Alternation operator for specifying alternative
matches.

() Parentheses. Grouping expression.

\n Backslash. Backreference expression (\1 through \9). Used in
conjunction with () to identify the nth occurrence of the
backreferenced expression. (REGEXP_ REPLACE allows up to 500
backreferences in replacement_string.)

[::] Character class. Examples are [:digit:] for numeric digits or
[:alnum:] for alphanumeric characters.

Built-in Functions and Packages | 89

REGEXP_COUNT (Oracle Database 11g)

The REGEXP_COUNT function returns a number contain-
ing the tally of the occurences of a regular expression in a
specific column, variable, or text literal. The syntax is:

REGEXP_COUNT (source_string, pattern [,postion
 [,match_modifier]])

where source_string is the character string to be searched,
pattern is the regular expression pattern to search for in the
source_string, and match_modifier is one or more modifiers
that apply to the search (see the upcoming section, “Match
modifiers”). For example:

phone_pattern := '\(?\d{3}\)?[\s.-]?\d{3}[\s-.]?\d{4}';
-- count the number of phone numbers in contact info
phone_count := regep_count(contact_clob,phone_pattern);

REGEXP_LIKE

The REGEXP_LIKE function determines whether a specific
column, variable, or text literal contains text matching a reg-
ular expression. It returns Boolean TRUE if the regular
expression is found in the source_string and FALSE if the reg-
ular expression is not found. The syntax is:

REGEXP_LIKE (source_string, pattern [,match_modifier])

where source_string is the character string to be searched,
pattern is the regular expression pattern to search for in
source_string, and match_modifier is one or more modifiers
that apply to the search. For example:

IF REGEXP_LIKE(phone_number,'^\(?212\)?'
THEN
 -- phone number begins with 212

[..] Collation element. Encloses multiple characters treated as one
character (e.g., 'ch' in Spanish).

[==] Equivalence class. Matches accented and unaccented versions of a
letter.

Pattern
metacharacter Description

90 | Oracle PL/SQL Language Pocket Reference

 -- optionally enclosed by parentheses
 APPLY_NYC_SURCHARGE;
END IF;

REGEXP_INSTR

The REGEXP_INSTR function locates, by character posi-
tion, an occurrence of text matching a regular expression
pattern. It returns the beginning or ending position of the
regular expression within a string. The syntax is:

REGEXP_INSTR (source_string, pattern
[,beginning_position [,occurrence [,return_option
[,match_modifier [,subexp]]]]])

where source_string is a character string to be searched, pat-
tern is a regular expression pattern to search for in source_
string, beginning_position is the character position at which
to begin the search, occurrence is the ordinal occurrence
desired (1 = first, 2 = second, etc.), return_option is either 0
for the beginning position or 1 for the ending position, and
match_modifier is one or more modifiers that apply to the
search. For Oracle Database 11g, you can also specify sub-
exp; if the pattern uses subexpressions, this parameter tells
the database which subexpression to return the position of
from the pattern found in the source string. Subexpressions
are used to parse out the interesting pieces. You define a sub-
expression by enclosing it in parentheses. For example:

witty_saying := 'Man fears time, but time fears the
 Pyramids';
-- Display the witty_saying
-- starting with the second occurence of the word 'time'
DBMS_OUTPUT.PUT_LINE(SUBSTR(witty_saying
 ,REGEXP_INSTR
 (witty_saying,'time',1,2)));

The output is:

time fears the Pyramids

REGEXP_SUBSTR

The REGEXP_SUBSTR function extracts text matching a
regular expression from a character column, variable, or text

Built-in Functions and Packages | 91

literal. It returns as many matching substrings as it finds
(which might be zero). The syntax is:

REGEXP_SUBSTR (source_string, pattern [,position
[,occurrence [,match_modifier [.subexp]]]])

where source_string is the character string to be searched,
pattern is the regular expression pattern to search for in
source_string, position is the character position at which to
begin the search, occurrence is the ordinal occurrence desired
(1 = first, 2 = second, etc.), and match_modifier is one or
more modifiers that apply to the search. For Oracle Data-
base 11g, you can also specify subexp; if the pattern uses sub-
expressions, this parameter tells the database which
subexpression to return from the pattern found in the source
string. For example:

-- get the leading number part of the address
-- (up to a whitespace character)
street_number := REGEXP_SUBSTR(address_line1,
 '[[:digit:]]+[:space:]');

In the following example, we parse out the exchange (sec-
ond group of three digits) from the first telephone number
found in the variable c_rec.c_clob. The regular expression
pattern is defined as three digits optionally enclosed by
parentheses; followed by an optional dot, dash, or
whitespace character; followed by three digits; followed by
an optional dot, dash, or whitespace character; followed by
four digits. The whole pattern must match for the substring
to be recognized as a matching pattern (telephone number).
We then parse out the interesting part—the middle three
digits—and assign it to the variable exchange. Here is the
example data:

SELECT * FROM contacts WHERE contact_id=26;

CONTACT_ID CONTACT_NAME CONTACT_CLOB
---------- -------------------- ------------------------
 26 Elwood Blues Brother of "Joliet" Jake
 address:
 1060 W Addison St
 Chicago, IL 60613
 home 773-555-5253
 club 312-555-2468

92 | Oracle PL/SQL Language Pocket Reference

Next is the subexpression parsing example:

DECLARE
 ptrn VARCHAR2(45);
 exchange VARCHAR2(3);
 CURSOR c_cur IS
 SELECT contact_clob c_clob
 FROM contacts WHERE contact_id=26;
BEGIN
 ptrn:= '\(?(\d{3})\)?[\s.-]?(\d{3})[\s.-]?(\d{4})';
 -- Get the second subexpression from the first
 -- occurrence of the pattern
 FOR c_rec in c_cur LOOP
 exchange:=REGEXP_SUBSTR(c_rec.c_clob,ptrn,1,1,'i',2);
 DBMS_OUTPUT.PUT_LINE('exchange='||exchange);
 END LOOP;
END;

This displays:

exchange=555

 REGEXP_REPLACE

The REGEXP_REPLACE function replaces a regular expres-
sion with new text that you specify. Your replacement text
may include back references to values in the regular expres-
sion. The syntax is:

REGEXP_REPLACE (source_string, pattern
[,replacement_string [,position [,occurrence
[,match_modifier]]])

where source_string is the character string to be searched,
pattern is the regular expression pattern to search for in
source_string, replacement_string is the replacement text for
pattern, position is the character position at which to begin
the search, occurrence is the ordinal occurrence desired (0 =
all occurrences, 1 = first, 2 = second, etc.), and match_modi-
fier is one or more modifiers that apply to the search. For
example:

-- Change the domain part of the email addresses
-- Replace everything between the @ and the '.com' with
-- the new domain name

Built-in Functions and Packages | 93

DBMS_OUTPUT.PUT_LINE(REGEXP_REPLACE(email_address
 ,'@.*\.com','@new_domain.com'));

Match modifiers

The match_modifiers available to the regular expression con-
dition and functions are shown in the following table:

Built-in Packages
Oracle complements the basic built-in functions of PL/SQL
with hundreds of supplied, or built-in, packages, all accessible
from within PL/SQL programs. These packages (whose names
start with “DBMS_” or “UTL_”) provide you with a robust
toolkit for meeting user requirements. The following table lists
a small subset of the most commonly used packages and their
programs. Check out the Oracle Database PL/SQL Packages
and Types Reference (the official documentation of these pack-
ages from Oracle Corporation) for much more complete cov-
erage of all of the officially supported built-in packages.

match_
modifier Description

i Uses a case-insensitive search; the default behavior is based on
NLS_SORT.

c Uses a case-sensitive search; the default behavior is based on
NLS_SORT.

n Enables the dot metacharacter to match newlines.

m Treats the source_string as multiple lines for purposes of the
beginning and end-of-line metacharacters ^ and $.

Built-in package/program Description

DBMS_CRYPTO Encrypts and decrypts data.

ENCRYPT Encrypts RAW or LOB data using a stream or
block cipher.

DECRYPT Decrypts RAW or LOB data.

HASH Creates a hash value (e.g., MD5, SHA-1)
from RAW or LOB input.

94 | Oracle PL/SQL Language Pocket Reference

MAC Creates a MAC code (e.g., MD5, SHA-1) from
RAW or LOB input.

DBMS_DB_VERSION (no programs,
only constants

Provides absolute and relative information
about the version of the database (Oracle
Database 10g and above).

DBMS_ERRLOG Allows an error-logging table to hold DML
errors, letting you continue past DML errors
(Oracle Database 10g Release 2 only).

CREATE_ERROR_LOG Creates an error-logging table.

DBMS_LOCK Provides an interface to lock management
services.

SLEEP Suspends execution for the given number of
seconds (or less than a second).

DBMS_LOB Provides an API to manage large objects
(CLOBs, BLOBs, and BFILEs).

OPEN Opens a LOB for manipulation.

CLOSE Closes the LOB.

INSTR, SUBSTR, TRIM, APPEND Performs data manipulation operations on
the LOB.

CREATETEMPORARY, FREETEMPORARY,
ISTEMPORARY

Works with temporary LOBs (reducing
runtime overhead).

GETLENGTH Gets the length of a LOB.

LOADFROMFILE, LOADBLOBLFROMFILE Reads data from files into LOBs.

DBMS_METADATA Reverse engineers database objects into the
scripts that can be used to create them.

GET_XML Returns metadata as an XML document.

GET_DDL Returns a DDL statement as a CLOB.

SET_FILTER Defines a filter restricting which objects are
referenced from the data dictionary.

DBMS_OUTPUT Displays information in system output
(usually your monitor) from within a PL/SQL
program.

ENABLE Activates DBMS_OUTPUT, sending your text
to the buffer.

Built-in package/program Description

Built-in Functions and Packages | 95

DISABLE Turns off DBMS_OUTPUT so that your text is
not sent to the buffer for display.

PUT_LINE Writes a message followed by a newline
character.

PUT Writes a messages without a newline
character.

NEW_LINE Writes a newline character.

GET_LINE Reads a line from the buffer up to the
newline character.

GET_LINES Reads an array of lines from the buffer.

DBMS_RLS Implements row-level security (RLS) (aka
virtual private database).

ADD_POLICY Defines a new policy for a table.

DROP_POLICY Drops a policy from a table.

EXECUTE Executes a policy, allowing you to test its
impact.

DBMS_SCHEDULER Provides powerful, flexible job scheduling
(available in Oracle Database 10g and
above), replacing DBMS_JOB.

CREATE_JOB Creates a job.

RUN_JOB Runs a job.

DROP_JOB Drops a job.

DBMS_SQL Executes dynamic SQL statements, mostly
used now for the more complex dynamic
SQL requirements.

OPEN_CURSOR Opens a cursor.

PARSE Parses the dynamic SQL statement.

DEFINE_COLUMN Defines an individual column, specifying its
datatype.

BIND_VARIABLE Binds a variable value to a placeholder.

EXECUTE Executes the SQL statement.

EXECUTE_AND_FETCH Executes the statement and fetches the first
row.

FETCH_ROWS Fetches one or more rows of data.

Built-in package/program Description

96 | Oracle PL/SQL Language Pocket Reference

COLUMN_VALUE Extracts a column value from the fetched
row.

CLOSE_CURSOR Closes the cursor.

DBMS_UTILITY Provides a wide variety of miscellaneous
programs.

COMPILE_SCHEMA Recompiles invalid program units.

EXEC_DDL_STATEMENT Executes a DDL statement inside PL/SQL.

FORMAT_ERROR_STACK Returns the nontruncated error message.

FORMAT_ERROR_BACKTRACE Returns the trace of error propagation back
to the line on which the error was originally
raised.

FORMAT_CALL_STACK Returns the execution call stack (that is, the
stack of program calls that brought you to
this point in your application code).

GET_TIME Returns the current point in time down to
the hundredth of a second; useful for
calculating the elapsed time of programs.

GET_CPU_TIME Returns the current point in time down to
the hundredth of a second; useful for
calculating the elapsed CPU time of
programs.

HTF Provides functions to generate HTML-
compatible text, used for deploying PL/SQL-
based Internet applications.

FORM* (e.g., FORMTEXT, FORMSUBMIT) Manipulates the contents of an HTML form.

TABLE* (e.g., TABLEDATA,
TABLECAPTION)

Manipulates the contents of an HTML table.

HTP Provides procedures to generate HTML-
compatible text, used for deploying PL/SQL-
based Internet applications.

HTMLOPEN Opens an HTML document.

HTMLCLOSE Closes an HTML document.

PRINT Sends text to the HTML buffer.

UTL_FILE Reads from or writes to nondatabase text
files.

Built-in package/program Description

Stored Procedures and Functions | 97

Stored Procedures and Functions
PL/SQL allows you to create a variety of named program
units, or containers, for your code. These include:

Procedure
A program that executes one or more statements

Function
A program that returns a value

FOPEN Opens a file for input or output.

ISOPEN Determines whether a file is open.

FFLUSH Flushes all buffered data to a file.

FCLOSE Closes a file.

GET_LINE Reads a line of text up to but not including
the newline character.

PUT_LINE Writes text to an open file followed by the
newline character.

PUT Writes text to an open file; does not include
a newline character.

PUTF Writes formated text to an open file.

NEW_LINE Writes a newline character to an open file.

FGETPOS Gets the current offset in bytes within an
open file.

FSEEK Adjusts the current offset within an open
file.

FRENAME Renames a file.

FREMOVE Deletes a file.

UTL_MAIL Sends email from a PL/SQL program to an
SMTP server.

SEND Sends an email message.

SEND_ATTACH_VARCHAR2 Sends an email with a text attachment.

SEND_ATTACH_RAW Sends an email with a binary attachment.

Built-in package/program Description

98 | Oracle PL/SQL Language Pocket Reference

Trigger
A program that executes in response to database changes

Package
A container for procedures, functions, and data structures

Object type
Oracle’s version of an object-oriented class; object types
can contain member procedures and functions

The following sections describe stored procedures and func-
tions. Later sections describe triggers, packages, and object
types.

Procedures
Procedures are program units that execute one or more state-
ments and can receive or return zero or more values through
their parameter lists. The syntax of a procedure is:

CREATE [OR REPLACE] PROCEDURE name
 [(parameter [,parameter])]
 [AUTHID { CURRENT_USER | DEFINER }]
{ IS | AS }

declaration_section
BEGIN

executable_section
[EXCEPTION

exception_section]
END [name];

Inside a PL/SQL executable section, a procedure is called as a
standalone executable statement:

apply_discount(new_company_id, 0.15);

Many execution environments, such as SQL*Plus, also sup-
port ANSI SQL’s CALL syntax:

CALL apply_discount(new_company_id, 0.15);

However, SQL*Plus programmers commonly invoke proce-
dures with the SQL*Plus EXECUTE command:

EXECUTE apply_discount(new_company_id, 0.15);

Stored Procedures and Functions | 99

or the equivalent anonymous block:

BEGIN
 apply_discount(new_company_id, 0.15);
END;

Functions
Functions are program units that execute zero or more state-
ments and return a value through the RETURN clause. Func-
tions also can receive or return zero or more values through
their parameter lists. The syntax of a function is:

CREATE [OR REPLACE] FUNCTION name
 [(parameter [,parameter])]
 RETURN return_datatype
 [AUTHID { CURRENT_USER | DEFINER }]
 [DETERMINISTIC]
 [PARALLEL_ENABLE [partition_clause]]
 [PIPELINED [USING implementation_type]]
 [RESULT_CACHE [RELIES_ON (table_list)]]
 [AGGREGATE USING implementation_type]
{ IS | AS }
 [declaration_section]
BEGIN

executable_section
[EXCEPTION

exception_section]
END [name];

A function must have at least one RETURN statement in the
execution section. The RETURN clause in the function
header specifies the datatype of the returned value.

See “Compiling Stored PL/SQL Programs” for information
on the keywords OR REPLACE, AUTHID, DETERMINIS-
TIC, PARALLEL_ENABLE, PIPELINED, and AGGREGATE
USING. See “Privileges and Stored PL/SQL” for AUTHID.
See “Function Result Cache” for RESULT_CACHE.

A function can be called anywhere that an expression of the
same type can be used. You can call a function:

• In an assignment statement:
sales07 := tot_sales(2007,'C');

100 | Oracle PL/SQL Language Pocket Reference

• To set a default value:
DECLARE
 sales07 NUMBER DEFAULT tot_sales(2007,'C');
BEGIN

• In a Boolean expression:
IF tot_sales(2007,'C') > 10000
THEN ...

• In a SQL statement:
SELECT first_name, surname
 FROM sellers
WHERE tot_sales(2007,'C') > 1000;

• As an argument in another program unit’s parameter list.

Here, for example, max_discount is a programmer-defined
function, and SYSDATE is a built-in function:

apply_discount(company_id, max_discount(SYSDATE));

Parameters
Procedures, functions, and cursors may have a parameter list.
This list contains one or more parameters that allow you to
pass information back and forth between the subprogram
and the calling program. Each parameter is defined by its
name, datatype, mode, and optional default value. The syn-
tax for a parameter is:

parameter_name [mode] [NOCOPY] datatype
 [{ := | DEFAULT } value]

Datatype

The datatype can be any PL/SQL or programmer-defined
datatype, but cannot be constrained by a size (NUMBER is
valid, NUMBER(10) is not valid). The actual size of the
parameter is determined from the calling program

CREATE OR REPLACE PROCEDURE empid_to_name
(in_id emp.emp_id%TYPE -- Compiles OK
,out_last_name VARCHAR2 -- Compiles OK
,out_first_name VARCHAR2(10) -- Won't compile
) IS
...

Stored Procedures and Functions | 101

The lengths of out_last_name and out_first_name are deter-
mined by the calling program:

DECLARE
 surname VARCHAR2(10);
 first_name VARCHAR2(10);
BEGIN
 empid_to_name(10, surname, first_name);
END;

Mode

The mode of a parameter specifies whether the parameter can
be read from or written to, as shown in the following table:

If the mode is not explicitly defined, it defaults to IN.

OUT parameters are not the same as IN OUT parameters.
When running the called program, the runtime engine
ignores (sets to NULL) any argument value you supply for an
OUT parameter; it preserves the value provided for an IN
OUT. If an exception is raised during execution of a proce-
dure or function, assignments made to OUT or IN OUT
parameters get rolled back unless the parameter includes the
NOCOPY option.

NOCOPY is a request to the compiler to make the parameter a
call by reference instead of a call by value. Normally, PL/SQL
passes IN/OUT parameters by value—a copy of the parame-
ter is created for the subprogram. When parameter items get
large, as collections and objects do, the copy can eat memory
and slow down processing. NOCOPY asks PL/SQL to pass the
parameter by reference, using a pointer to the single copy of
the parameter.

Mode Description Parameter usage

IN Read-only The value of the actual parameter can be
referenced inside the program, but the
parameter cannot be changed.

OUT or IN OUT Read/write The program can both reference (read)
and modify (write) the parameter.

102 | Oracle PL/SQL Language Pocket Reference

The main disadvantage of NOCOPY is that when an excep-
tion is raised during execution of a program that has modi-
fied an OUT or IN OUT parameter, the changes to the actual
parameters are not “rolled back” because the parameters
were passed by reference instead of being copied. Also,
NOCOPY does not always apply; see Oracle PL/SQL Pro-
gramming for a list of cases in which the compiler ignores the
NOCOPY request.

Default values

IN parameters can be given default values. If an IN parame-
ter has a default value, you do not need to supply an argu-
ment for that parameter when you call the program unit. It
automatically uses the default value. For example:

CREATE OR REPLACE PROCEDURE hire_employee
 (emp_id IN VARCHAR2
 ,hire_date IN DATE := SYSDATE
 -- same as DEFAULT SYSDATE
 ,company_id IN NUMBER DEFAULT 1 -- same as := 1
)
IS
 ...

Here are some example calls to the preceding procedure:

-- Use two default values.
hire_employee(new_empno);
-- Use one default value.
hire_employee(new_empno,'12-Jan-2007');
-- Use nontrailing default value, named notation.
hire_employee(emp_id=>new_empno, comp_id=>12);

Parameter-passing notations

Formal parameters are the names that are declared in the
header of a procedure or function. Actual parameters (argu-
ments) are the values or expressions placed in the parameter
list when a procedure or function is called. In the empid_to_
name example shown earlier in the “Datatype” section, the
formal parameters to the procedure are in_id, out_last_name,
and out_first_name. The actual parameters used in the call to
this procedure are 10, surname, and first_name.

Stored Procedures and Functions | 103

PL/SQL lets you use either of two styles for passing argu-
ments in parameter lists:

Positional notation
The default. Each value in the list of arguments supplied
in the program call is associated with the parameter in
the corresponding position.

Named notation
Explicitly associates the argument value with its parame-
ter by name (not position). When you use named nota-
tion, you can supply the arguments in any order, and you
can omit IN arguments that have default values.

The call to the empid_to_name procedure is shown here with
both notations:

BEGIN
 -- Implicit positional notation.
 empid_to_name(10, surname, first_name);

 -- Explicit named notation.
 empid_to_name(in_id=>10
 ,out_last_name=>surname
 ,out_first_name=>first_name);
END;

You may combine positional and named notation, as long as
positional arguments appear to the left of any named nota-
tion arguments; for example:

empid_to_name(10, surname, out_first_name => first_name);

When calling stored functions from SQL, all versions of the
Oracle database support positional notation; Oracle Data-
base 11g introduced support for named and mixed notation
as well.

Local Programs
A local program is a procedure or function that is defined in
the declaration section of a PL/SQL block. The declaration of
a local program must appear at the end of the declaration

104 | Oracle PL/SQL Language Pocket Reference

section, after the declarations of any types, records, cursors,
variables, and exceptions. A program defined in a declaration
section may be referenced only within that block’s execution
and exception sections. It is not defined outside that block.

The following program defines a local procedure and function:

PROCEDURE track_revenue
IS
 l_total NUMBER;

 PROCEDURE calc_total (year_in IN INTEGER) IS
 BEGIN
 calculations here ...
 END;

 FUNCTION below_minimum (comp_id IN INTEGER)
 RETURN BOOLEAN
 IS
 BEGIN
 ...
 END;
BEGIN
 ...main procedure logic here
END;

Local programs may be overloaded with the same restric-
tions as overloaded packaged programs.

Program Overloading
PL/SQL allows you to define two or more programs with the
same name within any declaration section, including a pack-
age specification or body. This is called overloading. If two or
more programs have the same name, they must be different
in some other way so that the compiler can determine which
program should be used.

Here is an example of overloaded programs in a built-in
package specification:

PACKAGE DBMS_OUTPUT
IS

Stored Procedures and Functions | 105

 PROCEDURE PUT_LINE (a VARCHAR2);
 PROCEDURE PUT_LINE (a NUMBER);
 PROCEDURE PUT_LINE (a DATE);
END;

Each PUT_LINE procedure is identical, except for the
datatype of the parameter. That is enough difference for the
compiler.

To overload programs successfully, one or more of the fol-
lowing conditions must be true:

• Parameters must differ by datatype family (number, char-
acter, datetime, or Boolean).

• The program type must be different (you can overload a
function and a procedure of the same name and identi-
cal parameter list).

• The numbers of parameters must be different.

In general, you cannot overload programs if:

• Only the datatypes of the functions’ RETURN clauses
are different.

• Parameter datatypes are within the same family (CHAR
and VARCHAR2, NUMBER and INTEGER, etc.).

• Only the modes of the parameters are different.

Starting with Oracle Database 10g, you can overload pro-
grams whose parameters differ only in numeric datatypes, as
long as they are in different datatype “families.” The runtime
environment will search first for a matching program with a
PLS_INTEGER (or BINARY_INTEGER) parameter; then it
will try to match NUMBER, BINARY_FLOAT, and finally
BINARY_DOUBLE, in that order. If you want to force the
use of the faster IEEE 754 datatypes, you may need to use the
TO_BINARY_FLOAT or TO_BINARY_DOUBLE functions
on the input argument, or for literals, append with f or d, as
discussed in the earlier “Numeric Literals” section.

106 | Oracle PL/SQL Language Pocket Reference

Forward Declarations
Programs must be declared before they can be used. PL/SQL
supports mutual recursion, in which program A calls pro-
gram B, whereupon program B calls program A. To imple-
ment this mutual recursion, you must use a forward
declaration of the programs. This technique declares a pro-
gram in advance of the program definition, thus making it
available for other programs to use. The forward declaration
is the program header up to the IS/AS keyword:

PROCEDURE perform_calc(year_in IN NUMBER)
IS
 /* Forward declaration for total_cost
 function. */
 FUNCTION total_cost (...) RETURN NUMBER;

 /* The net_profit function can now use
 total_cost. */
 FUNCTION net_profit(...) RETURN NUMBER
 IS
 BEGIN
 RETURN total_sales(...) - total_cost(...);
 END;

 /* The total_cost function calls net_profit. */
 FUNCTION total_cost (...) RETURN NUMBER
 IS
 BEGIN
 IF net_profit(...) < 0
 THEN
 RETURN 0;
 ELSE
 RETURN...;
 END IF;
 END;
BEGIN /* procedure perform_calc */
 ...
END perform_calc;

Table Functions
Table functions are functions that can be called within the
FROM clause of a query, as if they were relational tables. To

Stored Procedures and Functions | 107

act as a table function, a function must have a header that is
SQL-compatible (no Boolean arguments, for example), and
the function must return a nested table or VARRAY, whose
type is declared at the schema level.

Pipelined table functions are special cases of table functions
that allow you to “pipe” data out of the function back to the
calling query while the function is still executing. Here is a
very simple example of a pipelined table function:

CREATE OR REPLACE TYPE num_tab_typ AS TABLE OF NUMBER
/

CREATE OR REPLACE FUNCTION piped_func(factor IN NUMBER)
 RETURN num_tab_typ PIPELINED AS
BEGIN
 FOR counter IN 1..1000
 LOOP
 PIPE ROW (counter*factor);
 END LOOP;
END piped_func;
/

SELECT COLUMN_VALUE FROM TABLE (piped_func (2))
 WHERE rownum < 5

Function Result Cache
With the PL/SQL function result cache, new in Oracle Data-
base 11g, you can tell the database to retain the results of
your function in a cache, located in the System Global Area
(SGA), and available to all sessions that invoke the function.
The RESULT_CACHE feature is best suited for functions
that are executed relatively often (think every few seconds or
minutes) against data that changes relatively slowly (think
hourly or daily). Use the RELIES_ON clause to ensure that
the function results are flushed whenever there is DML on
any table or view used by the function. Each instance in a
RAC environment has its own result cache, which may differ
in which items are cached, but common items in different
instances will never disagree with each other.

108 | Oracle PL/SQL Language Pocket Reference

Whenever a result-cached function is called with new param-
eters, both the parameters and the return value are saved in
the cache. When the result-cached function is called with
cached parameters, whether from your session or from a dif-
ferent one, the results are returned from the cache instead of
being calculated anew. These cached entries can be moni-
tored with the V$RESULT_CACHE % series of data dictio-
nary views. Tune the size and usage of the result cache with
the RESULT_CACHE_SIZE and RESULT_CACHE_MODE
initialization parameters and the DBMS_RESULT_CACHE
built-in package.

To enable result caching for your function, it must not be:

• In an anonymous block

• Defined with invoker’s rights

• A pipelined table function

• Defined with any OUT or IN OUT parameters

• Defined with any IN parameters of type BLOB, CLOB,
NCLOB, REF CURSOR, object, or record

• Defined with a RETURN type of BLOB, CLOB, NCLOB,
REF CURSOR, object, or compound datatype (record or
collection) containing any of these unsupported types

Oracle reccommends but does not require that result-cached
functions not modify the database state or external state. For
example, result-cached functions should not call DBMS_
OUTPUT or UTL_FILE or send email because these exter-
nal operations will not execute consistently between result
cache hits and misses. Recursive fuctions are good candi-
dates for result caching. The factorial function is an example:

CREATE OR REPLACE FUNCTION factorial(n NUMBER)
RETURN NUMBER RESULT_CACHE IS
BEGIN
 IF n <= 1 THEN
 RETURN 1;
 ELSE
 RETURN n*factorial(n-1);
 END IF;
END;

Triggers | 109

For packaged functions, use the keyword RESULT_CACHE
in both the package specification and the package body, but
put the RELIES_ON clause in the package body:

CREATE OR REPLACE PACKAGE bi_sales IS
 FUNCTION avg_sales(cust_id IN NUMBER)
 RETURN NUMBER RESULT_CACHE;
END bi_sales;

CREATE OR REPLACE PACKAGE BODY bi_sales IS
 FUNCTION avg_sales(cust_id IN NUMBER)
 RETURN NUMBER RESULT_CACHE
 -- Create dependency on two tables

RELIES_ON (sales_fact,time_dim) IS
 BEGIN
 RETURN cust_id; -- simulation only
 END;
END bi_sales;

Privileges and Stored PL/SQL
Stored SQL supports two models for addressing privileges at
runtime. The default is definer rights, which tells the data-
base that the privileges of the owner or definer of the pro-
gram should be used. With the definer rights model, the
owner of the program must have the required privileges
granted directly to him—he cannot inherit the privileges
from a role.

With invoker rights, the user who executes the program does
so using his own privileges. Anonymous PL/SQL blocks
always execute with invoker rights. To create a program that
uses the invoker rights model, include the keywords
AUTHID CURRENT_USER in your program’s declaration.

Triggers
Triggers are programs that execute in response to changes in
table data or certain database events. A predefined set of
events can be “hooked” with a trigger, enabling you to

110 | Oracle PL/SQL Language Pocket Reference

integrate your own processing with that of the database. A
triggering event fires or executes the trigger.

There are three types of triggering events:

DML events
Fire when an INSERT, UPDATE, or DELETE statement
executes

DDL events
Fire when a CREATE, ALTER, or DROP statement
executes

Database events
Fire when one of the predefined database-level events
occurs

Complete lists of these events are included in later sections.

Creating Triggers
The syntax for creating a trigger on a DML event is:

CREATE [OR REPLACE] TRIGGER trigger_name
{ BEFORE | AFTER | INSTEAD OF | FOR } trigger_event
 ON {table_or_view_reference |
 NESTED TABLE nested_table_column OF view}
 [REFERENCING [OLD AS old] [NEW AS new]
 [PARENT AS parent]]
[FOR EACH ROW]
[FOLLOWS other_trigger] [DISABLE]
[COMPOUND TRIGGER]
[WHEN trigger_condition]
trigger_body;

The syntax for creating a trigger on a DDL or database event
is:

CREATE [OR REPLACE] TRIGGER trigger_name
{ BEFORE | AFTER } trigger_event
 ON [DATABASE | schema]
 [FOLLOWS other_trigger][DISABLE]
[WHEN trigger_condition]
trigger_body;

Triggers | 111

Trigger events are listed in the following table:

Trigger event Description

INSERT Fires whenever a row is added to the table_ or_view_
reference.

UPDATE Fires whenever an UPDATE changes the table_or_view_
reference. UPDATE triggers can additionally specify an OF
clause to restrict firing to updates OF certain columns.

DELETE Fires whenever a row is deleted from the table_or_
view_reference. Does not fire on a TRUNCATE of the
table.

ALTER Fires whenever an ALTER statement changes a database
object. In this context, objects are things such as tables or
packages (found in ALL_OBJECTS). Can apply to a single
schema or the entire database.

ANALYZE Fires whenever the database collects or deletes statistics
or validates the structure of a database object.

ASSOCIATE STATISTICS Fires whenever the database associates a statistic type
with a database object.

AUDIT Fires whenever the database records an audit operation.

COMMENT Fires whenever a comment on a database object is
modified.

CREATE Fires whenever a database object is created. Does not fire
on CREATE CONTROLFILE statements.

DB_ROLE_CHANGE In a Data Guard configuration, fires whenever a role
change from primary to standby or standby to primary
occurs. Only AFTER DB_ROLE_CHANGE triggers on the
DATABASE are allowed.

DDL Fires whenever one of the following events occurs:
ALTER, ANALYZE, ASSOCIATE STATISTICS, AUDIT,
COMMENT, CREATE, DISASSOCIATE, DROP, GRANT,
NOAUDIT, RENAME, REVOKE, or TRUNCATE.

DISASSOCIATE STATISTICS Fires whenever the database disassociates a statistic type
from a database object.

DROP Fires whenever a DROP statement removes an object
from the database. In this context, objects are things
such as tables or packages (found in ALL_OBJECTS). Can
apply to a single schema or the entire database.

112 | Oracle PL/SQL Language Pocket Reference

Triggers can fire BEFORE or AFTER the triggering event.
AFTER DML triggers are slightly more efficient than
BEFORE triggers.

The REFERENCING clause is allowed only for the data
events INSERT, UPDATE, and DELETE. It lets you give a
nondefault name to the old and new pseudo-records. These
pseudo-records give the program visibility to the pre- and
postchange values in row-level triggers. These records are
defined like %ROWTYPE records, except that columns of
type LONG or LONG RAW cannot be referenced. They are
prefixed with a colon in the trigger body and referenced with

GRANT Fires whenever a system, role, or object privilege is
assigned.

NOAUDIT Fires whenever the database processes a NOAUDIT
statement to stop auditing database operations.

RENAME Fires whenever a RENAME statement changes a database
object name.

REVOKE Fires whenever a system, role, or object privilege is
rescinded.

TRUNCATE Fires whenever a TRUNCATE statement is processed to
purge a table or cluster.

SERVERERROR Fires whenever a server error message is logged. Only
AFTER triggers are allowed in this context.

LOGON Fires whenever a session is created (a user connects to
the database). Only AFTER triggers are allowed in this
context.

LOGOFF Fires whenever a session is terminated (a user
disconnects from the database). Only BEFORE triggers are
allowed in this context.

STARTUP Fires when the database is opened. Only AFTER triggers
are allowed in this context.

SHUTDOWN Fires when the database is closed. Only BEFORE triggers
are allowed in this context.

SUSPEND Fires whenever a server error causes a transaction to be
suspended.

Trigger event Description

Triggers | 113

dot notation. Unlike other records, these fields can only be
assigned individually—aggregate assignment is not allowed.
All old fields are NULL within INSERT triggers, and all new
fields are NULL within DELETE triggers. Parent fields are
valid only in triggers on nested tables and refer to the cur-
rent row in the parent table.

FOR EACH ROW defines the trigger to be a row-level trig-
ger. Row-level triggers fire once for each row affected. The
default is a statement-level trigger, which fires only once for
each triggering statement.

Prior to Oracle Database 11g, you could not specify a firing
order for multiple triggers on the same event. Starting with
Oracle Database 11g, however, you can use the FOLLOWS
keyword to define this firing order.

If you specify the DISABLE keyword in Oracle Database 11g,
the database creates the trigger in a disabled state. You can
then issue ALTER TRIGGER ENABLE or ALTER TABLE
ENABLE ALL TRIGGERS to enable the trigger. Creating a
trigger in a disabled state allows you to verify that it will
compile and helps you avoid “ORA-04098: trigger NAME is
invalid and failed re-validation” errors.

The WHEN trigger_condition specifies the conditions that
must be met for the trigger to fire. Stored functions and
object methods are not allowed in the trigger condition.

The trigger body is a standard PL/SQL block. For example:

CREATE OR REPLACE TRIGGER add_tstamp
 BEFORE INSERT ON emp
 REFERENCING NEW as new_row
 FOR EACH ROW
 FOLLOWS audit_emp
 BEGIN
 -- Automatically timestamp the entry.
 SELECT CURRENT_TIMESTAMP
 INTO :new_row.entry_timestamp
 FROM dual;
END add_tstamp;

114 | Oracle PL/SQL Language Pocket Reference

Triggers are enabled by default on creation and can be dis-
abled (so that they do not fire) with an ALTER statement,
issued with the following syntax:

ALTER TRIGGER trigger_name { ENABLE | DISABLE };

ALTER TABLE table_name { ENABLE | DISABLE } ALL TRIGGERS;

Trigger Predicates
When using a single trigger for multiple events, use the trig-
ger predicates INSERTING, UPDATING, and DELETING in
the trigger condition to identify the triggering event, as
shown in this example:

CREATE OR REPLACE TRIGGER emp_log_t
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW
DECLARE
 dmltype CHAR(1);
BEGIN
 IF INSERTING THEN
 dmltype := 'I';
 INSERT INTO emp_log (emp_no, who, operation)
 VALUES (:new.empno, USER, dmltype);
 ELSIF UPDATING THEN
 dmltype := 'U';
 INSERT INTO emp_log (emp_no, who, operation)
 VALUES (:new.empno, USER, dmltype);
 END IF;
END;

DML Events
The DML events include INSERT, UPDATE, and DELETE
statements on a table. An INSTEAD OF trigger is associated
with a view and fires in lieu of DML to that view. Triggers on
these events can be statement-level triggers (table only) or row-
level triggers, and can fire BEFORE or AFTER the triggering
event. BEFORE triggers can modify the data in affected rows,
but perform an additional logical read. AFTER triggers do not
perform this additional logical read and therefore perform

Triggers | 115

slightly better, but are not able to change the :new values.
AFTER triggers are thus better suited for data-validation func-
tionality. Triggers cannot be created on SYS-owned objects.
The order in which these triggers fire, if present, is as follows:

1. BEFORE statement-level trigger

2. For each row affected by the statement

3. BEFORE row-level trigger

4. The triggering statement

5. AFTER row-level trigger

6. AFTER statement-level trigger

Compound DML Triggers
Compound triggers, new in Oracle Database 11g, allow you
to combine up to four DML triggering events into a single
coordinated program. These compound triggers let you share
common elements (subprograms and state data) among the
different triggering events; for example, you can use bulk
binds in your DML trigger and achieve significantly better
performance when several rows are affected by a statement.

A compound trigger has as many as four sections: a BEFORE
STATEMENT section, a BEFORE EACH ROW section, an
AFTER EACH ROW section, and an AFTER STATEMENT
section. The FOR and COMPOUND TRIGGER keywords
tell the database that the trigger is a compound trigger. In the
compound trigger’s declaration section, you declare the
structures that are to be shared by all sections. These struc-
tures include the collections needed for bulk binds, vari-
ables, local programs, etc. This trigger data is created when
the trigger fires and is automatically destroyed (cleaned up)
when the triggering statement completes.

Here is an example of using a compound trigger to record
audit information on changes to the salary column in the
employee table. The example shows how this is done with

116 | Oracle PL/SQL Language Pocket Reference

the old FOR EACH ROW technique as well as the newer,
more efficient bulk binds:

-- First row-by-row way
CREATE OR REPLACE TRIGGER old_trg
 AFTER UPDATE OF salary ON employees
 FOR EACH ROW
BEGIN
 INSERT INTO employee_audit
 VALUES(:new.employee_id ,:old.salary
 ,:new.salary ,SYSTIMESTAMP);
END old_trg;

-- This next trigger is created disabled
-- and must be enabled for use
-- Here is the bulk binds way
CREATE OR REPLACE TRIGGER new_trg
 FOR UPDATE OF salary ON employees DISABLE
 COMPOUND TRIGGER
 -- General declarations here
 TYPE emp_aud_t IS TABLE OF employee_audit%ROWTYPE
 INDEX BY BINARY_INTEGER;
 emps emp_aud_t;
 cntr PLS_INTEGER := 0;
 batch_size CONSTANT PLS_INTEGER := 100;
 -- local procedure
 PROCEDURE bulk_flush IS
 BEGIN
 FORALL idx IN 1..emps.count
 INSERT INTO employee_audit VALUES emps(idx);
 emps.delete;
 cntr := 0;
 END ;
 -- Each of the four possible sections is
 -- defined like this:
 AFTER EACH ROW IS
 BEGIN
 cntr := cntr+1;
 emps(cntr).employee_id := :new.employee_id;
 emps(cntr).old_salary := :old.salary;
 emps(cntr).new_salary := :new.salary;
 emps(cntr).change_ts := systimestamp;
 IF cntr >= batch_size THEN
 bulk_flush;
 END IF;
 END AFTER EACH ROW;

Packages | 117

 -- Do the final flush in the
 -- after statement section
 AFTER STATEMENT IS
 BEGIN
 bulk_flush;
 END AFTER STATEMENT;
END new_trg;

DDL Events
The DDL events are ALTER, ANALYZE, ASSOCIATE STA-
TISTICS, AUDIT, COMMENT, CREATE, DISASSOCIATE,
DROP, GRANT, NOAUDIT, RENAME, REVOKE, and
TRUNCATE. These triggers fire whenever the respective DDL
statement is executed. DDL triggers can apply to either a sin-
gle schema or the entire database.

Database Events
The database events are SERVERERROR, LOGON,
LOGOFF, STARTUP, SHUTDOWN, and SUSPEND. Only
BEFORE triggers are allowed for LOGOFF and SHUT-
DOWN events. Only AFTER triggers are allowed for
LOGON, STARTUP, and SERVERERROR events. A SHUT-
DOWN trigger will fire on a SHUTDOWN NORMAL and a
SHUTDOWN IMMEDIATE, but not on a SHUTDOWN
ABORT.

Packages
A package is a collection of PL/SQL objects that are grouped
together. There are several benefits to using packages,
including information hiding, object-oriented design, top-
down design, object persistence across transactions, and
improved performance.

Elements that can be placed in a package include proce-
dures, functions, constants, variables, cursors, exception
names, and TYPE statements (for associative arrays, records,
REF CURSORs, etc.).

118 | Oracle PL/SQL Language Pocket Reference

Package Structure
A package can have two parts: the specification and the
body. The package specification is required and lists all the
objects that are publicly available (i.e., may be referenced
from outside the package) for use in applications. It also pro-
vides all the information a developer needs to use objects in
the package; essentially, it is the package’s API.

The package body contains all the code needed to implement
procedures, functions, and cursors listed in the specification,
as well as any private objects (accessible only to other ele-
ments defined in that package) and an optional initialization
section.

If a package specification does not contain any procedures or
functions, and no private code is needed, that package does
not need to have a package body.

The syntax for the package specification is:

CREATE [OR REPLACE] PACKAGE package_name
[AUTHID { CURRENT_USER | DEFINER }]
{ IS | AS }
 [definitions of public TYPEs
 ,declarations of public variables, types, and objects
 ,declarations of exceptions
 ,pragmas
 ,declarations of cursors, procedures, and functions
 ,headers of procedures and functions]
END [package_name];

The syntax for the package body is:

CREATE [OR REPLACE] PACKAGE BODY package_name
 { IS | AS }
 [definitions of private TYPEs
 ,declarations of private variables, types, and objects
 ,full definitions of cursors
 ,full definitions of procedures and functions]
[BEGIN

executable_statements
[EXCEPTION

exception_handlers]]
END [package_name];

Packages | 119

Specify the optional OR REPLACE to rebuild an existing
package, preserving any EXECUTE privileges previously
granted to other accounts. The declarations in the specifica-
tions cannot be repeated in the body. Both the execution sec-
tion and the exception section are optional in a package
body. If the execution section is present, it is called the ini-
tialization section and executes only once—the first time any
package element is referenced during a session.

You must compile the package specification before the body
specification. When you grant EXECUTE authority on a
package to another schema or to PUBLIC, you are giving
access only to the specification; the body remains hidden.

Here’s an example of a package:

CREATE OR REPLACE PACKAGE time_pkg IS
 FUNCTION GetTimestamp RETURN DATE;
 PRAGMA RESTRICT_REFERENCES (GetTimestamp, WNDS);

 PROCEDURE ResetTimestamp(new_time DATE
 DEFAULT SYSDATE);
END time_pkg;

CREATE OR REPLACE PACKAGE BODY time_pkg IS
 StartTimeStamp DATE := SYSDATE;
 -- StartTimeStamp is package data.

 FUNCTION GetTimestamp RETURN DATE IS
 BEGIN
 RETURN StartTimeStamp;
 END GetTimestamp;

PROCEDURE ResetTimestamp(new_time DATE DEFAULT SYSDATE)
 IS
 BEGIN
 StartTimeStamp := new_time;
 END ResetTimestamp;

END time_pkg;

120 | Oracle PL/SQL Language Pocket Reference

Referencing Package Elements
The elements declared in the specification are referenced
from the calling application via dot notation:

package_name.package_element

For example, the built-in package DBMS_OUTPUT has a
procedure PUT_LINE, so a call to this package would look
like this:

DBMS_OUTPUT.PUT_LINE('This is parameter data');

Package Data
Data structures declared within a package specification or
body, but outside any procedure or function in the package,
are package data. The default lifetime of package data is your
entire session, spanning transaction boundaries and acting as
globals for your programs.

Keep the following guidelines in mind as you work with
package data:

• The state of your package variables is not affected by
COMMITs and ROLLBACKs.

• A cursor declared in a package has global scope. It
remains OPEN until you close it explicitly or until your
session ends.

• A good practice is to hide your data structures in the
package body and provide “get and set” programs to
read and write that data. This technique can help pro-
tect your data.

SERIALLY_REUSABLE Pragma
If you need package data to exist only during a call to the
packaged functions or procedures and not between calls of
the current session, you can potentially save runtime mem-
ory by using the pragma SERIALLY_REUSABLE. After each
call, PL/SQL closes the cursors and releases the memory used

Packages | 121

in the package. This technique is applicable only to large user
communities executing the same routine. Normally, the
database server’s memory requirements grow linearly with
the number of users; with SERIALLY_REUSABLE, this
growth can be less than linear because work areas for pack-
age states are kept in a pool in the database’s SGA and are
shared among all users. This pragma must appear in both the
specification and the body, as shown here:

CREATE OR REPLACE PACKAGE my_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE foo;
END my_pkg;

CREATE OR REPLACE PACKAGE BODY my_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE foo IS
 ...
END my_pkg;

Package Initialization
The first time a user references a package element, the entire
package is loaded into the SGA of the database instance to
which the user is connected. That code is then shared by all
sessions that have EXECUTE authority on the package.

Any package data is then instantiated into the session’s User
Global Area (UGA), a private area in either the SGA or the
Process Global Area (PGA). If the package body contains an
initialization section, that code will be executed. The initial-
ization section is optional and appears at the end of the pack-
age body, beginning with a BEGIN statement and ending
with the EXCEPTION section (if present) or the END of the
package.

The following package initialization section runs a query to
transfer the user’s minimum balance into a global package
variable. Programs can then reference the packaged variable
(via the function) to retrieve the balance, rather than execute
the query repeatedly.

122 | Oracle PL/SQL Language Pocket Reference

CREATE OR REPLACE PACKAGE usrinfo
IS
 FUNCTION minbal RETURN VARCHAR2;
END usrinfo;

CREATE OR REPLACE PACKAGE BODY usrinfo
IS
 g_minbal NUMBER; -- Package data
 FUNCTION minbal RETURN VARCHAR2
 IS
 BEGIN
 RETURN g_minbal;
 END;
BEGIN -- Initialization section
 SELECT minimum_balance
 INTO g_minbal
 FROM user_configuration
 WHERE username = USER;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN g_minbal := NULL;
END usrinfo;

Calling PL/SQL Functions in SQL
Stored functions can be called from SQL statements in a
manner similar to built-in functions such as DECODE, NVL,
or RTRIM. This is a powerful technique for incorporating
business rules into SQL in a simple and elegant way, but
there are several caveats and restrictions.

The most notable caveat is that stored functions executed
from SQL are not by default guaranteed to follow the
statement-level read consistency model of the database.
Unless the SQL statement and any stored functions in that
statement are in the same read-consistent transaction (even if
they are read-only), each execution of the stored function
may look at a different time-consistent set of data. To avoid
this potential problem, you need to ensure read consistency
programmatically by issuing the SET TRANSACTION
READ ONLY or SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE statement before executing your SQL

Calling PL/SQL Functions in SQL | 123

statement containing the stored function. A COMMIT or
ROLLBACK then needs to follow the SQL statement to end
this read-consistent transaction.

Calling a Function
The syntax for calling a stored function from SQL is the same
as that used to reference it from PL/SQL:

[schema_name.][pkg_name.]func_name[@db_link]
 [parm_list]

schema_name is optional and refers to the user/owner of the
function or package. pkg_name is optional and refers to the
package containing the called function. func_name is
required and is the function name. db_link is optional and
refers to the database link name to the remote database con-
taining the function. parm_list is optional, as are the parame-
ters passed to the function.

The following are example calls to the GetTimestamp function
in the time_pkg example seen earlier in the “Package Struc-
ture” section:

-- Capture system events.
INSERT INTO v_sys_event (timestamp, event, qty_waits)
 SELECT time_pkg.GetTimestamp, event, total_waits
 FROM v$system_event

-- Capture system statistics.
INSERT INTO v_sys_stat (timestamp, stat#, value)
 SELECT time_pkg.GetTimestamp, statistic#, value
 FROM v$sysstat;

There are several requirements for calling stored functions in
SQL:

• All parameters must be IN; no IN OUT or OUT parame-
ters are allowed.

• The datatypes of the function’s parameters and
RETURN must be compatible with RDBMS datatypes.
You cannot have arguments or RETURN types such as
BOOLEAN, programmer-defined record, associative
array, etc.

124 | Oracle PL/SQL Language Pocket Reference

• When calling stored functions from SQL, all versions of
Oracle support positional notation; Oracle Database 11g
has introduced support for named and mixed notation as
well.

• The function must be stored in the database, not in a
local program, Forms PL/SQL library, or form.

Calling Packaged Functions in SQL
Prior to Oracle8i Database, it was necessary to assert the
purity level of a packaged procedure or function when using
it directly or indirectly in a SQL statement. Beginning with
Oracle8i Database, the PL/SQL runtime engine determines a
program’s purity level automatically if no assertion exists.
The RESTRICT_REFERENCES pragma is still supported for
backward compatibility, but is usually unnecessary.

The RESTRICT_REFERENCES pragma asserts a purity
level. The syntax for the RESTRICT_REFERENCES pragma
is as follows:

PRAGMA RESTRICT_REFERENCES (program_name | DEFAULT,
purity_level);

The keyword DEFAULT applies to all methods of an object
type or all programs in a package.

From one to five purity levels, in any order, can be in a
comma-delimited list. The purity level describes to what
extent the program or method is free of side effects. Side
effects are listed in the following table with the purity levels
they address:

Purity level Description Restriction

WNDS Write No Database State Does not execute any INSERT,
UPDATE, or DELETE statements.

RNDS Read No Database State Does not execute any SELECT
statements.

WNPS Write No Package State Does not modify any package
variables.

Object-Oriented Features | 125

Column/Function Name Precedence
If your function has the same name as a table column in your
SELECT statement, and the function has no parameter, the
column takes precedence over the function. To force the
Oracle database to resolve the name to your function,
prepend the schema name to it:

CREATE TABLE emp(new_sal NUMBER ...);
CREATE FUNCTION new_sal RETURN NUMBER IS ...;

SELECT new_sal FROM emp; -- Resolves to column.
SELECT scott.new_sal FROM emp; -- Resolves to function.

Object-Oriented Features
In the Oracle database, an object type combines attributes
(data structures) and methods (functions and procedures)
into a single programming construct. The object type con-
struct allows programmers to define their own reusable
datatypes for use in PL/SQL programs and table and column
definitions. An object type must be created in a database
before it can be used in a PL/SQL program.

An instance of an object type is an object in the same way
that a variable is an instance of a scalar type. Objects are
either persistent (stored in the database) or transient (stored
only in PL/SQL variables). Objects can be stored in a data-
base as a row in a table (a row object) or as a column in a
table. A table of row objects can be created with syntax such
as this:

CREATE TABLE table_name OF object_type;

RNPS Read No Package State Does not read any package
variables.

TRUST — Does not enforce the restrictions
declared, but allows the compiler to
trust that they are true.

Purity level Description Restriction

126 | Oracle PL/SQL Language Pocket Reference

When stored in such a table, the object (row) has a system-
generated Object IDentifier (OID) that is unique throughout
the database.

Object Types
An object type has two parts: a specification and a body. The
specification is required and contains the attributes and
method specifications. The syntax for creating the object
type specification is:

CREATE [OR REPLACE] TYPE obj_type_name
[AUTHID { CURRENT_USER | DEFINER }]
{ { IS | AS } OBJECT | UNDER parent_type_name }
(

attribute_name datatype,...,
 [[[NOT] OVERRIDING] [[NOT] FINAL] [[NOT]
 INSTANTIABLE] method_spec,...,]
 [PRAGMA RESTRICT_REFERENCES(program_name, purities)]
)
[[NOT] FINAL]
[[NOT] INSTANTIABLE];

where method_spec is one of the following:

MEMBER { PROCEDURE | FUNCTION } program_spec

or:

STATIC { PROCEDURE | FUNCTION } program_spec

or:

{ ORDER | MAP } MEMBER FUNCTION comparison_function_spec

or:

[FINAL] [INSTANTIABLE] CONSTRUCTOR FUNCTION
 RETURNING SELF AS RESULT constructor_function_spec

Attribute specifications must appear before method specifica-
tions. Object attributes, like table columns, are defined with a
name and a datatype. The name can be any legal identifier,
and the datatype can be almost any datatype known to SQL
other than LONG, LONG RAW, ROWID, and UROWID.
Attributes can be declared using other programmer-defined

Object-Oriented Features | 127

object types or collection types, but not of the special types
ANYTYPE, ANYDATA, or ANYDATASET. Attributes can-
not be of datatypes unique to PL/SQL, such as BOOLEAN.

Method headers appear in the object type specification in a
comma-delimited list. Unlike in a package specification,
commas (not semicolons) terminate the object type program
specifications. To support object comparisons and sorting,
the type optionally can include one comparison method—
either ORDER or MAP. Member methods can be overloaded
in object types following the same rules as function and pro-
cedure overloading in packages.

Method “specs” that appear earlier in the syntax actually can
be call specs for Java classes in the database or for external
procedures written in C.

The syntax for creating the object type body is:

CREATE [OR REPLACE] TYPE BODY obj_type_name
{ IS | AS }
(

method_implementation; [method_implementation ...]
)
;

Where method_implementation is one of:

MEMBER { PROCEDURE | FUNCTION } function_body

or:

STATIC { PROCEDURE | FUNCTION } function_body

or:

{ ORDER | MAP } MEMBER FUNCTION comparison_function_body

or:

[FINAL] [INSTANTIABLE] CONSTRUCTOR FUNCTION
 RETURNING SELF AS RESULT constructor_function_body

Again, the program bodies can be call specs to Java or C
programs.

128 | Oracle PL/SQL Language Pocket Reference

Type Inheritance
You can define subtypes of object types following a single-
inheritance model. The database does not have a master
root-level object; instead, each type is “standalone” unless
declared otherwise.

The UNDER keyword specifies that the type exists as a sub-
type in a hierarchy. When you are using UNDER, the parent
type must be marked NOT FINAL. By default, types are
FINAL, meaning that you cannot declare a subtype of that
type.

A subtype contains all the attributes and methods of its par-
ent (supertype), and may contain additional attributes and
methods. Methods can override corresponding methods
from the parent. Changes to the supertype—such as the
addition of attributes or methods—are reflected in the sub-
types automatically.

By default, object types are INSTANTIABLE—that is, an
invoking program may create an object of that type. The
phrase NOT INSTANTIABLE indicates that you don’t want
any objects of the type, in which case the database will not
create a constructor for it. This variation generally makes
sense only with types that will serve as parents of other types.

Methods
There are four kinds of methods: member, static, construc-
tor, and comparison.

Member methods

A member method is a procedure or function designated
with the keyword MEMBER. Calling programs may invoke
such a method only on objects that have been instantiated.

Object-Oriented Features | 129

Static methods

A static method has no access to a current (SELF) object.
Such a method is declared using the keyword STATIC and
can be invoked at any time using type.method syntax.

Constructor methods

Even if you don’t declare any methods, every instantiable
object has a default constructor method that allows a calling
program to create new objects of that type. This built-in
method:

• Has the same name as the object type

• Is a function that returns an object of that type

• Accepts attributes in named or positional notation

• Must be called with a value (or NULL) for every
attribute—there is no DEFAULT clause for object
attributes

• Cannot be modified

You can replace this default constructor with your own using
the CONSTRUCTOR FUNCTION syntax. This method
must have the same name as the object type, but there are no
restrictions on its parameter list. The RETURN clause of the
constructor’s header must be RETURN SELF AS RESULT.
The database supports overloading of programmer-defined
constructors. All nonstatic methods have the implied param-
eter SELF, which refers to the current instance of the object.
The default mode for the SELF parameter is IN for functions
and IN OUT for procedures. A programmer can alter the
mode by explicitly including SELF in the formal parameter
list. An example of a programmer-defined default construc-
tor follows:

CREATE OR REPLACE TYPE book_t AS OBJECT (
 isbn VARCHAR2(13),
 pages INTEGER,

130 | Oracle PL/SQL Language Pocket Reference

 CONSTRUCTOR FUNCTION book_t
 (id IN INTEGER DEFAULT NULL,
 title IN VARCHAR2 DEFAULT NULL,
 isbn IN VARCHAR2 DEFAULT NULL,
 pages IN INTEGER DEFAULT NULL)
 RETURN SELF AS RESULT,

 OVERRIDING MEMBER FUNCTION ck_digit_okay
 RETURN BOOLEAN,

 OVERRIDING MEMBER FUNCTION print
 RETURN VARCHAR2
);

Comparison methods

The comparison methods, ORDER and MAP, establish ordi-
nal positions of objects for comparisons such as “<” or
“between” and for sorting (ORDER BY, GROUP BY, DIS-
TINCT). The database invokes a comparison method auto-
matically whenever it needs to perform such an operation.

MAP and ORDER methods are actually special types of
member methods—that is, they execute only in the context
of an existing object. An ORDER function accepts two
parameters: SELF and another object of the same type. It
must return an INTEGER value as explained in the follow-
ing table:

For example, the Senate ranks majority party members
higher than nonmajority party members and within the
majority (or nonmajority) by years of service. Here is an
example ORDER function incorporating these rules:

Return value Object comparison

Any negative integer (commonly –1) SELF < second object

0 SELF = second object

Any positive integer (commonly 1) SELF > second object

NULL Undefined comparison: attributes needed
for the comparison are NULL

Object-Oriented Features | 131

CREATE TYPE senator_t AS OBJECT (
 majority boolean_t,
 yrs_service NUMBER,
 ORDER MEMBER FUNCTION ranking (other IN
 senator_t)
 RETURN INTEGER);

CREATE OR REPLACE TYPE BODY senator_t AS
 ORDER MEMBER FUNCTION ranking (other IN
 senator_t)
 RETURN INTEGER IS
 BEGIN
 IF SELF.majority.istrue()
 AND other.majority.istrue()
 THEN RETURN SIGN(SELF.yrs_service -
 other.yrs_service);
 ELSIF SELF.majority.istrue()
 AND other.majority.isfalse()
 THEN RETURN 1;
 ELSIF SELF.majority.isfalse()
 AND other.majority.istrue()
 THEN RETURN -1;
 ELSIF SELF.majority.isfalse()
 AND other.majority.isfalse()
 THEN RETURN SIGN(SELF.yrs_service -
 other.yrs_service);
 END IF;
 END ranking;
END;

A MAP function accepts no parameters and returns a scalar
datatype such as DATE, NUMBER, or VARCHAR2 for
which the database already knows a collating sequence. The
MAP function translates, or maps, each object into this sca-
lar datatype space.

If no ORDER or MAP function exists for an object type, then
SQL, but not PL/SQL, supports only limited equality com-
parisons of objects. Objects are equal if they are of the same
object type and if each attribute is equal.

Use MAP if possible when frequently sorting or comparing a
large number of objects, as in a SQL statement; an internal
optimization reduces the number of function calls. With
ORDER, the function must run once for every comparison.

132 | Oracle PL/SQL Language Pocket Reference

Methods in Subtypes
When defining methods in a subtype, you have two options:
you can inherit a supertype’s method, or you can override a
supertype’s method by defining your own subtype method of
the same name and parameter list. If you choose to inherit,
you do not need to write any code in the subtype.

To override a supertype, you must use the OVERRIDING
keyword in the header of the program, as shown here:

CREATE TYPE food_t AS OBJECT (
 name VARCHAR2(100),
 food_group VARCHAR2 (100),
 MEMBER FUNCTION price RETURN NUMBER
)
 NOT FINAL
 ;

CREATE TYPE dessert_t UNDER food_t (
 contains_chocolate CHAR(1),
 OVERRIDING MEMBER FUNCTION price RETURN NUMBER
)
 ;

This example also shows that if you want to allow a method
to be overridden, you must specify that this method be NOT
FINAL. By default, methods are FINAL and cannot be
overridden.

You also can define a method to be NOT INSTANTIABLE,
which means that you specify only the header of the method,
but you do not need to provide an implementation in the
OBJECT TYPE body for that method. For example:

CREATE TYPE food_t AS OBJECT (
 name VARCHAR2(100),
 food_group VARCHAR2 (100),
 NOT INSTANTIABLE MEMBER FUNCTION price RETURN NUMBER
)
 NOT FINAL
 NOT INSTANTIABLE
 ;

Object-Oriented Features | 133

The consequences of a NOT INSTANTIABLE method are as
follows:

• The entire object type must be defined as NOT INSTAN-
TIABLE, which means that you cannot instantiate an
instance from this type. You can use it only as a super-
type in an object type hierarchy.

• Any subtype of food_t must provide an implementation
of the price function or in turn also be defined as a NOT
INSTANTIABLE object type.

The database supports dynamic method dispatch, also known
as dynamic polymorphism, to determine which overridden
method to invoke at runtime. That is, it will choose the
method in the most specific subtype associated with the cur-
rently instantiated object. However, using the “generalized
invocation” syntax introduced in Oracle Database 11g, it is
possible to directly invoke a parent type’s method. For exam-
ple, you can invoke the food_t version of a dessert’s price
method using the following syntax:

DECLARE
 my_dessert dessert_t := dessert_t('tres leches',
 'sugar', 'N');
BEGIN
 DBMS_OUTPUT.PUT_LINE((my_dessert AS food_t).price);
END;

This is also possible inside the implementation sections of
subtype methods using SELF:

(SELF AS parent_type).method_invocation;

Manipulating Objects in PL/SQL and SQL
Variables declared as objects begin their life atomically null,
meaning that the expression:

object IS NULL

evaluates to TRUE. Attempting to assign values to the
attributes of an atomically null object will return an

134 | Oracle PL/SQL Language Pocket Reference

ACCESS_ INTO_NULL exception. Instead, you must initial-
ize the object, in one of these ways:

• Use either the default constructor method or a user-
defined constructor.

• Assign to it the value of an existing object.

• Use SELECT INTO or FETCH INTO.

Here is an example using each initialization technique:

DECLARE
 project_boiler_plate project_t;
 build_web_site project_t;

 -- Initialize via constructor.
 new_web_mgr proj_mgr_t :=
 proj_mgr_t('Ruth', 'Home Office');

 -- Initialize via user-defined constructor
 -- that provides defaults
 new_web_mgr proj_mgr_t := NEW proj_mgr_t();

 CURSOR template_cur IS
 SELECT VALUE(proj)
 FROM projects
 WHERE project_type = 'TEMPLATE'
 AND sub_type = 'WEB SITE';
 BEGIN
 OPEN template_cur;
 -- Initialize via FETCH INTO.
 FETCH template_cur
 INTO project_boiler_plate;

 -- Initialize via assignment.
 build_web_site := project_boiler_plate;
 ...

After an object is initialized, it can be stored in the database,
and you can then locate and use that object with the REF,
VALUE, and DEREF operators.

Object-Oriented Features | 135

Upcasting and Downcasting
The Oracle database supports implicit upcasting (widening) of
a subtype and provides the TREAT operator to downcast (nar-
row) a supertype. TREAT also can explicitly upcast a subtype.

The following example returns to the food-dessert hierarchy
to demonstrate upcasting and downcasting:

CREATE TYPE food_t AS OBJECT (
 name VARCHAR2(100),
 food_group VARCHAR2 (100)
)
 NOT FINAL
 ;
/
CREATE TYPE dessert_t UNDER food_t (
 contains_chocolate CHAR(1)
)
 ;

DECLARE
 marzipan dessert_t :=
 NEW dessert_t('marzipan', 'sweets', 'N');
 ice_cream_sundae dessert_t;
 tasty_treat food_t;
BEGIN
 /* An implied upcast */
 tasty_treat := marzipan;

 /* An explicit downcast */
 ice_cream_sundae := TREAT(tasty_treat AS dessert_t);
END;

The syntax of TREAT is:

TREAT (object_instance AS [REF] type)

where object_instance is a value that is of a particular super-
type in an object hierarchy, and type is the name of the sub-
type (or supertype) in the same hierarchy. The TREAT
expression won’t compile if you attempt to cast a type to
another from a different type hierarchy. If you supply an

136 | Oracle PL/SQL Language Pocket Reference

object from the correct type hierarchy, TREAT will return
either the casted object or NULL—but not an error.

You also can use dot notation to obtain access to the casted
object’s attributes and methods:

TREAT (object_instance AS type).{ attribute |
method(args...) }]

SQL also supports TREAT and implied upcasting.

REF operator

REF, short for REFerence, designates a datatype modifier or
an operator to retrieve a logical pointer to an object. This
pointer encapsulates the OID and can simplify navigation
among related database objects. The syntax for a REF opera-
tor is:

REF(table_alias_name)

For example:

SELECT REF(p) FROM pets p WHERE ...

A PL/SQL variable can hold a reference to a particular object
type:

DECLARE
 petref REF Pet_t;
BEGIN
 SELECT REF(p) INTO petref FROM pets p WHERE ...

Through deletions, REFs can reference a nonexistent object,
called a dangling REF, resulting in a state that can be
detected with the IS DANGLING predicate. For example:

UPDATE pets
 SET owner_ref = NULL
 WHERE owner_ref IS DANGLING;

The built-in package UTL_REF provides programmatic
access to stored objects via their REF.

Object-Oriented Features | 137

VALUE operator

Use the VALUE operator to retrieve a row object as a single
object rather than as multiple columns. The syntax for the
VALUE operator is:

VALUE(table_alias_name)

For example:

SELECT VALUE(p) FROM pets p WHERE ...

DEREF operator

Use the DEREF operator to retrieve the value of an object for
which you have a REF. The syntax for DEREF is:

DEREF(table_alias_name)

For example:

DECLARE
 person_ref REF person_t;
 author person_t;
BEGIN
 -- Get the ref.
 SELECT REF(p) INTO person_ref
 FROM persons WHERE p.last_name ='Pribyl';

 -- Dereference the pointer back to the value.
 SELECT DEREF(person_ref) INTO author FROM dual;

In addition, the database uses an OID internally as a unique
identifier for each object. As with a ROWID, you don’t typi-
cally use an OID directly. The following table shows ways of
referencing persistent objects:

Scheme Description Applications

OID An opaque, globally unique handle,
produced when the object is stored in
the database as a table (row) object.

The persistent object’s handle; it
is what REFs point to. Your
program never uses it directly.

VALUE An operator. In SQL, it acts on an
object in an object table and returns
the object’s contents. Different from
the VALUES keyword found in some
INSERT statements.

Used when fetching a table
(row) object into a variable, or
when you need to refer to an
object table as an object instead
of a list of columns.

138 | Oracle PL/SQL Language Pocket Reference

Changing Object Types
You can add methods, but not attributes, to an object type
stored in the database using the ALTER TYPE statement.
There are several forms of this statement:

ALTER TYPE typename
 { ADD | MODIFY | DROP } ATTRIBUTE attribute_spec
 { INVALIDATE | CASCADE
 { [NOT] INCLUDING TABLE DATA |
 CONVERT TO SUBSTITUTABLE }
 [FORCE] };

ALTER TYPE typename
 [NOT] { INSTANTIABLE | FINAL }
 { INVALIDATE | CASCADE
 { [NOT] INCLUDING TABLE DATA |
 CONVERT TO SUBSTITUTABLE }
 [FORCE] };

ALTER TYPE typename
 COMPILE [DEBUG] [SPECIFICATION | BODY]
 [REUSE SETTINGS];

Because altering the structure of a type can have quite a few
repercussions for database objects, the database requires that
you either INVALIDATE the dependent objects or CAS-
CADE the change.

When making a change from FINAL to NOT FINAL and cas-
cading the change, you can cause existing table objects to be
either NOT SUBSTITUTABLE (the default) or SUBSTITUT-
ABLE. The following is an example of adding an attribute:

REF A pointer to an object. May be used
within a SQL statement as an
operator or in a declaration as a type
modifier.

Allows quasi-normalizing of
object-relational databases and
joining of object tables using dot
navigation. In PL/SQL, REFs
serve as input/output variables.

DEREF Reverse pointer lookup for REFs. Used for retrieving the contents
of an object when all you know
is its REF.

Scheme Description Applications

Compilation | 139

ALTER TYPE catalog_item_t
 ADD ATTRIBUTE publication_date VARCHAR2(400)
 CASCADE INCLUDING TABLE DATA;

The next example shows adding a method:

ALTER TYPE catalog_item_t
 ADD MEMBER PROCEDURE save,
 CASCADE;

After adding a method to a spec, you would use CREATE
OR REPLACE TYPE BODY to implement it in the body
(include all the other methods as well).

There are a variety of restrictions on modifying types; for
example, you cannot change a type from INSTANTIABLE to
NOT INSTANTIABLE if you have created tables that
depend on the type.

The syntax for dropping an object type is:

DROP TYPE typename [FORCE];

You can drop only an object type that has not been imple-
mented in a table (or you can drop the tables first). The
FORCE option will drop object types even if they have
dependencies, but FORCE will irreversibly invalidate any
dependent objects such as tables. FORCE does not do a
DROP CASCADE.

If you are dropping a type whose parent type has table
dependents, this form of the statement:

DROP TYPE subtype_name VALIDATE;

will “validate” the safety of dropping the subtype before per-
forming it. That is, the database will perform the drop only if
there are no objects of the subtype in any substitutable col-
umns of the parent type.

Compilation
PL/SQL compilation is an area that has seen several improve-
ments in recent database versions. These capabilities include

140 | Oracle PL/SQL Language Pocket Reference

conditional compilation, informational warnings, optimiza-
tion, and compilation to native code.

Compiling Stored PL/SQL Programs
The following keywords are available when creating stored
programs:

OR REPLACE
Used to rebuild an existing program unit, preserving
privileges granted on it.

AUTHID
Defines whether the program will execute with the privi-
leges of, and resolve names like, the object owner
(DEFINER), or as the user executing the function
(CURRENT_USER). The default AUTHID is DEFINER.
See the section “Privileges and Stored PL/SQL” for addi-
tional information.

DETERMINISTIC
Required for function-based indexes. A function is
DETERMINISTIC if it always returns the same value
when called with the same parameters. Deterministic
functions do not meaningfully reference package vari-
ables or the database. The built-in INITCAP is determin-
istic, but SYSDATE is not.

PARALLEL_ENABLED [(PARTITION in_parm BY {ANY
HASH | RANGE})]

Tells the optimizer that a function is safe for parallel exe-
cution. The PARTITION BY clause is available only to
functions that have a REF CURSOR IN parameter. This
clause is used with table functions and tells the opti-
mizer how the input can be partitioned.

PIPELINED
Used with table functions. Specifies that the results of
this table function should be returned iteratively via the
PIPE ROW statement. A pipelined function can start to
return data as it is generated instead of all at once after
processing is complete.

Compilation | 141

AGGREGATE USING
Required for aggregate functions. Tells the database that
the function evaluates a group of rows and returns a sin-
gle result. For example, the built-in function AVG is an
aggregate function.

The following compiler settings are established at program
creation time based on the database or session configuration
and can be changed or retained during recompilation. The
database stores these compiler settings on a program-by-
program basis, so you can recompile your program later
using the REUSE SETTINGS option. If you do not reuse the
stored settings, or if you explicitly define one or more set-
tings, your current session settings are used.

PLSQL_CCFLAGS
Contains a comma-delimited list of name:value pairs con-
trolling conditional compilation. See the upcoming “Con-
ditional Compilation” section for more information.

PLSQL_CODE_TYPE
Controls whether interpreted or native code is created
during compilation. Valid values are INTERPRETED or
NATIVE. See the “Performing Native Compilation of
PL/SQL” section for more information.

PLSQL_DEBUG
Controls whether or not the program will be instru-
mented for debugging during compilation. Valid values
are TRUE or FALSE. When compiled for debugging, a
program will always be INTERPRETED and never
NATIVE.

PLSQL_OPTIMIZE_LEVEL
Controls the level of optimization employed by the com-
piler. Valid values are 0, 1, 2, or 3. See the “Optimizing
Compiler” section for more information.

PLSQL_WARNINGS
Controls the level of warnings that the compiler will
report. See the “Compiler Warnings” section for more
information.

142 | Oracle PL/SQL Language Pocket Reference

NLS_LENGTH_SEMANTICS
Controls whether VARCHAR2 and CHAR datatypes are
defined with BYTE (default) or CHAR semantics.
NVARCHAR2, NCHAR, CLOB, and NCLOB datatypes
are always defined with CHAR semantics.

To recompile the procedure my_proc, explicitly setting the
optimization level to 3, run the following:

ALTER PROCEDURE my_proc COMPILE PLSQL_OPTIMIZE_ LEVEL = 3;

Then to recompile it later with the saved settings, run the
following:

ALTER PROCEDURE my_proc COMPILE REUSE SETTINGS;

To view all of the stored compiler settings for your pro-
grams, query the view USER_PLSQL_OBJECT_SETTINGS.

Conditional Compilation
Conditional compilation, introduced with Oracle Database
10g (patch level 10.1.0.4), allows your programs to decide at
compile time which blocks of code will be implemented. You
can conditionally include code in the compiled program
based on the database version, environment, or other config-
urable settings. There are three types of compiler directives
available for you to use:

Selection directives
Use the $IF directive to evaluate an expression and deter-
mine which code should be included. For example:

CREATE OR REPLACE PROCEDURE new_emp IS
BEGIN
$IF DBMS_DB_VERSION.VER_LE_10_2 $THEN
 -- Legacy code
 SELECT employees_seq.NEXTVAL
 INTO emp_rec.empno FROM dual;
$ELSIF DBMS_DB_VERSION.VER_LE_11 $THEN
 -- Oracle Database 11g code
 emp_rec.empno := employees_seq.NEXTVAL;
$ELSE
 -- Later releases than Oracle Database 11g

Compilation | 143

 emp_rec.empno := employees_seq.NEXTVAL;
$END
 INSERT INTO emp VALUES (emp_rec);
END;

Inquiry directives
Use the $$identifier directive to refer to conditional com-
pilation flags (PLSQL_CCFLAGS). These inquiry direc-
tives can be referenced in an $IF directive or
independently. For example:

ALTER SESSION SET PLSQL_CCFLAGS =
 'pl_debug:false, pl_trace_level:2';

CREATE OR REPLACE PROCEDURE extract_client_data
IS
BEGIN
$IF $$pl_debug OR $$pl_trace_level >= 2 $THEN
 DBMS_SUPPORT.START_TRACE(waits=>TRUE, binds=>TRUE);
$ELSIF $$pl_trace_level >= 1 $THEN
 DBMS_SUPPORT.START_TRACE(waits=>TRUE, binds=>FALSE);
$END
 NULL; -- code goes here
END extract_client_data;

Error directives
Use the $ERROR directive to force compilation errors if
your prerequisite conditions are not met. For example:

CREATE OR REPLACE PROCEDURE long_compilation IS
BEGIN
$IF $$plsql_optimize_level <> 1
$THEN
 $error 'Program must be compiled with optimization
level = 1' $end
$END
 NULL;
END long_compilation;

The settings that are available for use in these directives
include:

Compiler settings
PLSQL_CCFLAGS, PLSQL_DEBUG, PLSQL_WARN-
INGS, PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_
TYPE, and NLS_LENGTH_SEMANTICS.

144 | Oracle PL/SQL Language Pocket Reference

PLSQL_LINE (PLS_INTEGER literal)
The line number within the program or can be explicitly
defined with the PLSQL_CCFLAGS parameter.

PLSQL_UNIT (VARCHAR2 literal)
The name of the program being compiled. For anony-
mous blocks, it is null. PLSQL_UNIT can also be explic-
itly defined with the PLSQL_CCFLAGS parameter.

Static expressions defined in package specifications
These expressions cannot change when a package is
recompiled.

The PL/SQL compiler reads and interprets these directives,
generating the code to be implemented. To identify what has
actually been deployed in the compiled program, use the
DBMS_PREPROCESSOR package, as in the following
example:

-- Create a conditionally compiled program
CREATE OR REPLACE PROCEDURE my_cc_proc IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('DB Version is:'
 ||DBMS_DB_VERSION.VERSION||'r'
 ||DBMS_DB_VERSION.RELEASE);
$IF DBMS_DB_VERSION.VER_LE_10_2 $THEN
 DBMS_OUTPUT.PUT_LINE('Version 10r2 code here');
$ELSIF DBMS_DB_VERSION.VER_LE_11 $THEN
 DBMS_OUTPUT.PUT_LINE('Version 11 code here');
$ELSE
 DBMS_OUTPUT.PUT_LINE('Later than 11 code here');
$END
END;

-- Display the deployed code
BEGIN
DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE
 ('PROCEDURE', USER, 'MY_CC_PROC');
END;

This displays the deployed code:

PROCEDURE my_cc_proc IS
BEGIN

Compilation | 145

 DBMS_OUTPUT.PUT_LINE('DB Version is:'
 ||DBMS_DB_VERSION.VERSION
 ||'r'|| DBMS_DB_VERSION.VERSION);
 DBMS_OUTPUT.PUT_LINE('Version 10r2 code here');
END;

Compiler Warnings
Compile-time warnings can help make your programs more
robust. These warnings highlight potential problems that are
not severe enough to raise an exception, but may result in
runtime errors or poor performance. You can configure the
compiler to reject as an error any of these warnings. Warn-
ings result in the program compiling to a VALID status, but
errors result in an INVALID status.

To enable these warnings, you need to set the database ini-
tialization parameter PLSQL_WARNINGS. This parameter
can be set globally in the SPFILE initialization file, in your
session via the ALTER SESSION statement, or with the built-
in package DBMS_WARNING.

The PLSQL_WARNINGS parameter is a comma-delimited
list of values, each of which has the syntax:

[ENABLE | DISABLE | ERROR] : [ALL | SEVERE | INFORMATIONAL
| PERFORMANCE | warning_number]

For example, to enable all warnings in your session, execute:

ALTER SESSION SET plsql_warnings = 'enable:all'

If you want to configure Oracle Database 11g warning mes-
sage number 06009 (“OTHERS handler does not end in
RAISE or RAISE_APPLICATION_ERROR”) as an error and
enable all warnings in the performance category except warn-
ing number 07202 (“Parameter may benefit from use of the
NOCOPY compiler hint”), execute:

ALTER SESSION SET plsql_warnings = 'error:06009'
 ,'enable:performance'
 ,'disable:07203';

146 | Oracle PL/SQL Language Pocket Reference

To see what your current setting is, you can execute:

DBMS_OUTPUT.PUT_LINE (
 DBMS_WARNING.get_warning_setting_string());

Some examples of warnings follow:

SQL>ALTER SESSION SET plsql_warnings ='ENABLE:ALL',
 'ERROR:6009';
Session altered.

SQL>CREATE OR REPLACE PROCEDURE bad_practice IS
 2 test_string VARCHAR2(32);
 3 BEGIN
 4 test_string := 'My demo program';
 5 EXCEPTION
 6 WHEN OTHERS THEN NULL;
 7 END;
 8 /
Warning: Procedure created with compilation errors.

SQL>SHOW ERRORS
Errors for PROCEDURE BAD_PRACTICE:

LINE/COL ERROR
-------- ---
6/8 PLS-06009: procedure "BAD_PRACTICE" OTHERS
handler does not end in RAISE or RAISE_APPLICATION_ERROR

SQL> ALTER SESSION SET plsql_warnings = 'enable:all';
Session altered.

SQL> CREATE OR REPLACE PACKAGE create_policy IS
2 PROCEDURE process_dec_page (dec_page IN OUT CLOB);
3 END create_policy;
4 /
SP2-0808: Package created with compilation warnings

SQL> SHOW ERRORS
Errors for PACKAGE CREATE_POLICY:

LINE/COL ERROR
-------- ---
2/32 PLW-07203: parameter 'DEC_PAGE' may benefit from use
of the NOCOPY compiler hint

Compilation | 147

SQL> CREATE OR REPLACE PACKAGE BODY create_policy IS
2 PROCEDURE process_dec_page (
3 dec_page IN OUT NOCOPY CLOB) IS
4 BEGIN
5 default_dec(dec_page);
6 END process_dec_page;
7 END create_policy;
8 /
SP2-0810: Package Body created with compilation warnings

SQL> SHOW ERRORS
Errors for PACKAGE BODY CREATE_POLICY:

LINE/COL ERROR
-------- ---
3/6 PLW-05000: mismatch in NOCOPY qualification between
specification and body

SQL> CREATE OR REPLACE PROCEDURE dead_code IS
2 x NUMBER := 10;
3 BEGIN
4 IF x = 10 THEN
5 x := 20;
6 ELSE
7 x := 100; -- dead code
8 END IF;
9 END dead_code;
10 /
SP2-0804: Procedure created with compilation warnings

SQL> SHOW ERRORS
Errors for PROCEDURE DEAD_CODE:

LINE/COL ERROR
-------- ---
7/7 PLW-06002: Unreachable code

Optimizing Compiler
PL/SQL’s optimizing compiler can improve runtime perfor-
mance dramatically while imposing only a relatively slight
overhead at compile time. Fortunately, the benefits of opti-
mization apply to both interpreted and natively compiled
PL/SQL because optimizations are applied by analyzing
patterns in source code.

148 | Oracle PL/SQL Language Pocket Reference

The optimizing compiler is enabled by default. However, you
may want to alter its behavior, by either lowering its aggres-
siveness or disabling it entirely. For example, if, in the course
of normal operations, your system must perform recompila-
tion of many lines of code, or if an application generates
many lines of dynamically executed PL/SQL, the overhead of
optimization may be unacceptable. Note, however, that Ora-
cle’s tests show that the optimizer doubles the runtime per-
formance of computationally intensive PL/SQL.

In some cases, the optimizer may even alter program behav-
ior. One such case might occur in code written for Oracle9i
Database, which depends on the relative timing of initializa-
tion sections in multiple packages. If your testing demon-
strates such a problem, yet you want to enjoy the
performance benefits of the optimizer, you may want to
rewrite the offending code or introduce an initialization rou-
tine that ensures the desired order of execution.

New to Oracle Database 11g is program intra-unit inline opti-
mization. This optimization technique replaces a call to a sub-
program with a copy of the program, at compile time. The
performance improvement occurs because the subprogram
does not have to be loaded separately at runtime. This tech-
nique is especially useful for short utility helper programs.

To change the optimizer settings, set the initialization param-
eter PLSQL_OPTIMIZE_LEVEL, either for your session with
an ALTER SESSION statement or for the database with an
ALTER SYSTEM statement. Valid settings are:

0 No optimization

1 Moderate optimization, such as eliminating superfluous
code or exceptions

2 (default)
Aggressive optimization beyond level 1, including
rearranging source code

3 (Oracle Database 11g)
Include inline subprogram optimization

Compilation | 149

You can also modify these settings for the current session; for
example:

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 0;

With optimization level 2, you can control inline optimiza-
tion with the INLINE pragma (see the earlier “Pragmas” sec-
tion). The syntax of the INLINE pragma is:

PRAGMA INLINE (program_name,'YES | NO');

YES requests the compiler to use inline optimization for calls
to program_name, while NO explicitly requests the compiler
to not use inline optimization for such calls. In the following
example, compiled with the default optimization level 2,
calls to the procedure P are requested to be inlined:

CREATE OR REPLACE PACKAGE BODY bi_util IS
 FUNCTION avg_sales(cust_id IN NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 PRAGMA INLINE (P,'YES'); -- inline calls to program P
 p('Inside simulation');
 RETURN cust_id; -- simulation only
 END;
END bi_util;

Performing Native Compilation of PL/SQL
Starting with Oracle9i Database, you can speed up many of
your PL/SQL programs by compiling the stored programs
natively. The database will translate your PL/SQL program
into C code and compile it into a shared library (DLL on
Microsoft Windows platforms). Prior to Oracle Database
11g, you had to have a supported C compiler on your data-
base server machine to use native compilation. Using native
compilation, you will realize the greatest performance gains
with computer-intensive applications and the least from pro-
grams that contain only declarations, such as types and pack-
age specifications. Programs compiled for debug will never
be compiled natively.

150 | Oracle PL/SQL Language Pocket Reference

When a natively compiled program is first executed on some
platforms and database releases, it is copied from a shared
library in the system tablespace to the PLSQL_NATIVE_
LIBRARY_DIR, where it is cached. On other platforms and
database releases, this copy is not necessary.

Oracle9i Database

With Oracle9i Database, follow these steps to compile
natively:

1. Edit the makefile, spnc_makefile.mk, which you should
find in the $ORACLE_HOME/plsql subdirectory.

2. Set the initialization parameter PLSQL_COMPILER_FLAGS to
'NATIVE'. Individual developers may alter the value of
PLSQL_COMPILER_FLAGS using the ALTER SES-
SION statement.

3. The following parameters may also need to be set:
PLSQL_NATIVE_C_COMPILER, PLSQL_NATIVE_
LINKER, PLSQL_NATIVE_LIBRARY_DIR, PLSQL_
NATIVE_MAKE_UTILITY, and PLSQL_NATIVE_
MAKE_FILE_NAME. The DBA can set these parame-
ters in the database initialization file or use an ALTER
SYSTEM statement.

4. If your system has more than 15,000 PL/SQL objects, it
may take a long time to scan these in a single directory, so
set PLSQL_NATIVE_DIR_SUBDIR_COUNT as shown
previously and create the directories named d0, d1, d2, etc.

5. Create or replace your stored programs.

6. Verify the native compilation by querying the data dictio-
nary view USER_STORED_SETTINGS and also by
locating the shared library or DLL in the database
server’s filesystem.

Oracle Database 10g

With Oracle Database 10g, native compilation became much
simpler to configure, in part because Oracle started using

Compilation | 151

database tables rather than files for permanent storage of the
generated shared libraries. Oracle also limits support to the C
compiler supplied by the platform vendor. Follow these steps
to compile natively:

1. Inspect the file $ORACLE_HOME/plsql/spnc_commands
and, if necessary, revise the path to the supported C
compiler.

2. Set the parameter PLSQL_NATIVE_LIBRARY_DIR as
shown previously and create this directory if it does not
exist. This is the location in the filesystem that the data-
base will use for an on-demand cache of the shared
library files. The OFA standard locates this directory
under one of the data file directories. For security rea-
sons, only the ORACLE user should have write privi-
leges on this and any PLSQL_NATIVE_DIR_SUBDIR
directories.

3. If your system has more than 15,000 PL/SQL objects, it
may take a long time to scan these in a single directory, so
set PLSQL_NATIVE_DIR_SUBDIR_COUNT as shown
previously and create the directories named d0, d1, d2, etc.

4. Either make a global change so that the database param-
eter PLSQL_CODE_TYPE is set to NATIVE, or issue a
session-level statement:

ALTER SESSION SET PLSQL_CODE_TYPE = 'NATIVE';

5. Create or replace your stored programs.

Oracle Database 11g

With Oracle Database 11g, a separate C compiler is no
longer needed, nor is the spnc_commands file. The database
compiles directly to shared libraries. Follow these steps:

1. On some platforms, you need to set the parameter
PLSQL_NATIVE_LIBRARY_DIR as shown previously.
Linux and Windows do not use this directory.

152 | Oracle PL/SQL Language Pocket Reference

2. Either make a global change so that the database param-
eter PLSQL_CODE_TYPE is set to NATIVE, or issue a
session-level statement:

ALTER SESSION SET PLSQL_CODE_TYPE = 'NATIVE';

3. Recompile your stored programs.

Java Language Integration
Java programmers can write server-side classes that invoke
SQL and PL/SQL using standard JDBC or SQLJ calls. PL/SQL
programmers can call server-side Java methods by writing a
PL/SQL cover or call spec for Java using Oracle database DDL.

Server-side Java in the database may be faster than PL/SQL
for computer-intensive programs, but not as nimble for data-
base access. PL/SQL is much more efficient for database-
intensive routines because, unlike Java, it doesn’t have to pay
the overhead for converting SQL datatypes for use inside the
stored program. Database programmers will want to con-
tinue to use PL/SQL for programs that perform a lot of data-
base I/O and use Java for the best raw computation
performance. Follow these steps to create a Java stored pro-
cedure (JSP):

1. Write or otherwise obtain functional Java code. Having
source code is not necessary, though, so you can use
class libraries from third parties. The classes must, how-
ever, meet two requirements. Methods published to SQL
and PL/SQL must be declared static; PL/SQL has no
mechanism for instantiating nonstatic Java classes. In
addition, the classes must not issue any GUI calls (for
example, to AWT) at runtime.

If you write your own JSP and it needs to connect to the
database for access to tables or stored procedures, use
standard JDBC and/or SQLJ calls in your code. Many
JDBC and SQLJ reference materials are available to pro-
vide assistance in calling SQL or PL/SQL from Java, but
be sure to review the product-specific documentation
that ships with your tool.

Java Language Integration | 153

2. Once you have the Java class in hand, either in source or
.class file format, load it into the database. The data-
base’s loadjava command-line utility is a convenient way
to accomplish the load. Refer to the Oracle Java Devel-
oper’s Guide for further assistance with loadjava.

3. Create a call spec for the Java method, specifying the AS
LANGUAGE JAVA clause of the CREATE statement
(described in the “Publishing Java to PL/SQL” section).
You may create a function or procedure cover as
appropriate.

4. Grant EXECUTE privileges on the new JSP using
GRANT EXECUTE; PL/SQL routines can now call the
JSP as if it were another PL/SQL module.

Example
Let’s write a simple “Hello, World” JSP that will accept an
argument:

package oreilly.plsquick.demos;

public class Hello {
 public static String sayIt (String toWhom) {
 return "Hello, " + toWhom + "!";
 }
}

Saved in a file called Hello.java, the source code can be
loaded directly into the database. Doing so will compile the
code automatically. Here is a simple form of the loadjava
command:

loadjava -user scott/tiger -oci8 oreilly/plsquick/
 demos/Hello.java

The Hello.java file follows the Java file placement conven-
tion for packages, and thus exists in a subdirectory named
oreilly/plsquick/demos.

154 | Oracle PL/SQL Language Pocket Reference

We can fire up our favorite SQL interpreter, connect as
SCOTT/TIGER, and create the call spec for the Hello.sayIt()
method:

CREATE FUNCTION hello_there (to_whom IN VARCHAR2)
 RETURN VARCHAR2
 AS LANGUAGE JAVA
 NAME 'oreilly.plsquick.demos.Hello.sayIt
 (java.lang.String) return java.lang.String';

Now we can call our function very easily:

BEGIN
 DBMS_OUTPUT.PUT_LINE(hello_there('world'));
END;

And we get the following as the expected output:

Hello, world!

Publishing Java to PL/SQL
To write a call spec, use the AS LANGUAGE JAVA clause in
a CREATE statement. The syntax for this clause is:

{ IS | AS } LANGUAGE JAVA
 NAME 'method_fullname [(type_fullname,...]
 [RETURN type_fullname]'

method_fullname is the package-qualified name of the Java
class and method. It is case-sensitive and uses dots to sepa-
rate parts of the package’s full name. type_fullname is the
package-qualified name of the Java datatype. Notice that a
simple string, not a SQL name, follows the NAME keyword.

Type mapping follows most JDBC rules regarding the legal
mapping of SQL types to Java types. JDBC extensions exist
for Oracle-specific datatypes. Most datatype mappings are
relatively straightforward, but passing database objects of a
user-defined type is harder than one would think. Oracle
provides a JPublisher tool that generates the Java required to
encapsulate a database object and its corresponding REF.
Refer to Oracle’s JPublisher documentation for guidelines on
usage.

Java Language Integration | 155

The AS LANGUAGE JAVA clause is the same regardless of
whether you are using Java as a standalone JSP, the imple-
mentation of a packaged program, or the body of an object
type method. For example, here is the complete syntax for
creating JSPs as PL/SQL-callable functions or procedures:

CREATE [OR REPLACE]
{ PROCEDURE procedure_name [(param[, param]...)]
 | FUNCTION function_name [(param[, param]...)]
 RETURN sql_type
}
[AUTHID {DEFINER | CURRENT_USER}]
[PARALLEL_ENABLE]
[DETERMINISTIC]
{ IS | AS } LANGUAGE JAVA
 NAME 'method_fullname [(type_fullname,...]
 [RETURN type_fullname]'

When using Java as the implementation of a packaged proce-
dure or function, the database allows you to place the Java
call spec either in the package specification (where the call
spec substitutes for the subprogram specification) or in the
package body (where the call spec substitutes for the sub-
program body). Similarly, when using JSPs in object type
methods, the Java call spec can substitute for either the
object type method specification or its body.

Note that Java functions typically map to PL/SQL functions,
but Java functions declared void map to PL/SQL proce-
dures. Also, you will quickly learn that mistakes in mapping
PL/SQL parameters to Java parameters become evident only
at runtime.

Data Dictionary
To learn what Java library units are available in your schema,
look in the USER_OBJECTS data dictionary view where the
object_type is like “JAVA%”. If you see a Java class with
INVALID status, it has not yet been resolved successfully.
Note that the names of the Java source library units need not
match the names of the classes they produce.

157

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

Symbols
-- (double hyphen), specifying

single-line comments, 8
!= (exclamation point-equals

sign) inequality
operator, 7

(pound sign), in identifier, 3
$ (dollar sign)

in identifiers, 3
metacharacter, 88

() (parentheses)
expression or list delimiter, 7
metacharacter, 88
special literal delimiter, 4

* (asterisk)
metacharacter, 88
multiplication operator, 7

+ (plus sign)
addition operator, 6
metacharacter, 88

. (period)
component separator, 7, 58
in collection methods, 68
in Java names, 154
in package element

names, 120
in TREAT expressions, 136
in triggers, 113
metacharacter, 88

/ (slash), 8

/ * and */, specifying multiline
comments, 8

: = assignment operator, 59
; (semicolon), in statements, 45
< > (angle brackets)

collection inequality
function, 66

inequality operator, 7
special literal delimiter, 4

= (equals sign)
collection equality

function, 66
equality operator, 7

? (question mark),
metacharacter, 88

[] (square brackets)
in conventions, 2
metacharacter, 88

[..] (collation element),
metacharacter, 89

[::] (character class),
metacharacter, 88

[==] (equivalence class),
metacharacter, 89

\ (backslash), 4, 67, 88, 89
metacharacter, 88

^ (caret), metacharacter, 88
_ (underscore), in identifier, 3
{ } (curly braces)

metacharacter, 88
special literal delimiter, 4

158 | Index

| (vertical bar),
metacharacter, 88

| | (vertical bars) string
concatenation
operator, 7

" (double quote) optional
identifier delimiter, 4

' (single quote)
literal delimiter, 4, 5, 7
programmer-defined delimiter

suffix, 4, 5

A
ABS built-in function, 82
ACCESS_INTO_NULL

exception, 134
ACOS built-in function, 82
actual parameters, 102
ADD_MONTH built-in

function, 85
AFTER triggers, 114
AGGREGATE USING

keyword, 141
ALTER event, 111, 117
ALTER SESSION statement

changing value of PLSQL_
COMPILER_FLAGS
parameter, 150

setting PLSQL_WARNINGS
parameter, 145

ALTER TYPE statement, 138
ANALYZE event, 111, 117
anchored declarations, 22
AND operation and Boolean

datatype, 17
arguments, passing in parameter

lists, 102
AS LANGUAGE JAVA

clause, 153, 155
ASCII built-in function, 78
ASCIISTR built-in function, 76,

78
ASIN built-in function, 83

assigning records, 58
ASSOCIATE STATISTICS

event, 111, 117
associative arrays, 61, 62

adding/removing elements, 65
collection methods used

with, 69
initializing, 64
syntax for declaring, 63

ATAN built-in function, 83
ATAN2 built-in function, 83
atomically null collections

COLLECTION_IS_NULL
exception, 69

VARRAYs, 63
atomically null objects, 133
attribute specifications of object

types, 126
AUDIT event, 111, 117
AUTHID CURRENT_USER

keywords, 109
AUTHID keyword, 140
AUTONOMOUS_

TRANSACTION
pragma, 8, 37

B
BEFORE triggers, 114
BFILE datatype, 18
BIN_TO_NUM built-in

function, 83
BINARY_DOUBLE datatype, 13
BINARY_FLOAT datatype, 13
BINARY_INTEGER

datatype, 12
bind variables, 47
BITAND built-in function, 83
BLOB datatype, 18
block structure in PL/SQL, 9, 11
BOOLEAN datatype, 17
Boolean literals, 4
built-in functions, 75–87, 89
built-in packages, 93–97

Index | 159

bulk binds and collections, 71,
75

BULK COLLECT INTO
clause, 74

%BULK_EXCEPTIONS
attribute, 73

C
cache, function result, Oracle

Database 11g, 107
call specs to Java, 152

creating, 153, 154
object types and, 127, 155

CALL syntax (ANSI SQL), 98
CARDINALITY function, 66
CASCADE keyword, 138
CASE expression, 26, 27
CASE statement, 25
CAST built-in function, 76, 85
CAST function, 66
CEIL built-in function, 83
CHAR datatype, 14
character datatypes, 14
character set in PL/SQL, 2
CHARTOROWID built-in

function, 76
CHR built-in function, 78
CLOB datatype, 18
closing

cursor variables, 48
dynamic cursors, 46
explicit cursors, 40

COLLECT function, 66
COLLECTION_IS_NULL

exception, 69
collections

adding/removing elements, 65
bulk binds and, 71, 75
declaration syntax for, 63
initializing, 64
methods for, 68, 71
nested collections, 71
nested table functions, 65, 68
types of, 61, 62

column/function name
precedence, 125

COMMENT event, 111, 117
comments in PL/SQL, 8
COMMIT statement, 35

executing stored
functions, 123

comparison methods for object
types, 130

compilation
conditional, 142
native, 149, 151
settings, 141, 143

compiler warnings, 145, 147
compiler, optimizing, 147
COMPOSE built-in function, 78
compound triggers, 115
CONCAT built-in function, 78
conditional compilation, 142
conditional control

statements, 23, 27
CONSTANT keyword, 21
constrained declarations, 21
constrained subtypes, 23
CONSTRUCTOR FUNCTION

syntax, 129
constructor methods, 129
CONTINUE statement, 31

loops, 28
control statements

conditional, 23, 27
sequential, 27

conversion functions, 76
CONVERT built-in

function, 76, 79
Coordinated Universal Time

(UTC), 16
COS built-in function, 83
COSH built-in function, 83
COUNT function, 68
CREATE event, 111, 117
CREATE OR REPLACE TYPE

BODY, changing object
types using, 139

160 | Index

CURRENT_DATE built-in
function, 85

CURRENT_TIMESTAMP built-
in function, 85

cursor expressions, 49
cursor FOR loops, 30
cursor variables, 48

opening, 48
cursors in PL/SQL, 38, 50

dynamic, 45
explicit, 38, 42
implicit, 42, 45
static, 38

D
d BINARY_DOUBLE literal

suffix, 5
dangling REFs and IS

DANGLING
predicate, 136

data dictionary views
RESULT_CACHE, 109
USER_OBJECTS, 155
USER_STORED_

SETTINGS, 150
V$RESULT_CACHE, 109
V$TIMEZONE_NAMES, 17

data structures in packages, 120
Database 11g

native compilation, 151
database events and

triggers, 110, 117
database interaction, 34, 38
datatype conversions

implicit, 19
datatypes

mapping, 154
of parameters, 100

DATE datatype, 15
datetime datatypes, 15, 17
datetime functions, 85
datetime interval literals, 6
DB_ROLE_CHANGE

event, 111

DBMS_CRYPTO package, 93
DBMS_DB_VERSION

package, 94
DBMS_ERRLOG package, 94
DBMS_LOB package, 94
DBMS_LOCK package, 94
DBMS_OUTPUT package, 94
DBMS_SCHEDULER

package, 95
DBMS_SQL package, 46, 95

TO_CURSOR_NUMBER
function, 47

TO_REFCURSOR
function, 47

DBMS_UTILITY package, 96
FORMAT_CALL_STACK

function, 55
FORMAT_ERROR_

BACKTRACE
function, 53

DBTIMEZONE built-in
function, 85

DDL events and triggers, 110,
111, 114, 117

DEC datatype, 12
DECIMAL datatype, 12
decimal numeric datatypes, 12
declaring

collections, 63
exceptions, 51, 52
explicit cursors, 39
local programs, 103
programs, 106
records, 57
variables, 19, 22

DECOMPOSE built-in
function, 79

DEFAULT keyword, 124
default values

for parameters, 102
for variables, 21

definer rights model for stored
PL/SQL, 109

DELETE procedure for
collections, 65, 68

Index | 161

DELETE trigger event, 111
DELETING trigger

predicate, 114
delimiters in PL/SQL, 6

Oracle Database 10g, 4
DEREF operator, 137
DETERMINISTIC

keyword, 140
DISABLE keyword, 113
DISASSOCIATE STATISTICS

event, 111, 117
DLLs

native compilation of PL/SQL
and, 149

DML
events and triggers, 110, 114
exceptions and, 56
records and, 59

dot notation (see entries under .
(period)), 58

DOUBLE PRECISION
datatype, 12

downcasting supertypes, 135
DROP event, 111, 117
dynamic cursors, 45
dynamic method dispatch

(dynamic
polymorphism), 133

E
error handling (see exception

handling)
exception handling, 50, 56

built-in exceptions, list of, 51
bulk binds and collections, 73
declaring exceptions, 51, 52
propagating exceptions, 54,

56
raising exceptions, 53
scope of, 54

EXCEPTION_CODE field, 73
EXCEPTION_INDEX field, 73
EXCEPTION_INIT pragma, 9

declaring exceptions, 52

EXECUTE command
(SQL*Plus), 98

EXECUTE IMMEDIATE
statement, 45

EXECUTE privileges
for collections, 71
for packages, 119

EXISTS function, 68
EXIT statement, 31
EXP built-in function, 83
explicit cursors, 38, 42

attributes of, 41
closing, 40
cursor expressions and, 49
declaring, 39
fetching from, 40
opening, 39

expressions, cursor, 49
EXTEND procedure, 69
EXTRACT built-in function, 85

F
f BINARY_FLOAT literal

suffix, 5
FALSE value, 17
FETCH INTO statement

assigning records, 59
BULK COLLECT INTO

clause and, 74
manipulating objects, 134

FETCH statement, 40
fields of records, 56

DML and records, 59
referencing, 58

FINAL keyword, 126, 128
changing to NOT FINAL, 138

FIRST function, 69
FLOAT datatype, 12
FLOOR built-in function, 83
FOR EACH ROW

statement, 113
FOR loops, 29
FORALL statement, 72

162 | Index

FORCE option, dropping object
types using, 139

formal parameters, 102
forward declarations of

programs, 106
%FOUND attribute, 41, 75
FROM built-in function, 76
FROM_TZ built-in function, 85
function result cache, Oracle

Database 11g, 107
functions

built-in, 75–87
calling packaged functions in

SQL, 124
column/function name

precedence, 125
conversion functions, 76
datetime functions, 85
numeric functions, 82
stored functions, 122
string functions, 78
table functions, 106
(see also stored functions)

G
generalized invocation syntax,

Oracle Database
11g, 133

Gennick, Jonathan, 87
GOTO statement, 27
GRANT event, 112, 117
GRANT EXECUTE

statement, 153
GREATEST built-in

function, 79, 83

H
handling exceptions (see

exception handling)
HEXTODRAW built-in

function, 76

HTF package, 96
HTP package, 96

I
identifiers in PL/SQL, 3
IEEE 754-compliant floating-

point datatypes, 13, 105
IF-THEN-ELSE statements, 23
implicit cursors, 42, 45
implicit datatype

conversions, 19
IN function, 66
IN OUT parameters, 101
IN parameters, 101
INITCAP built-in function, 79
initializing

collections, 64
objects, 133
packages, 121

INLINE pragma, 9
INSERT event, 111
INSERTING trigger

predicate, 114
INSTANTIABLE keyword, 126,

128
restrictions on modifying

types, 139
INSTR built-in function, 79
INT datatype, 12
INTEGER datatype, 12
INTERVAL DAY TO SECOND

datatype, 15
INTERVAL keyword, 6
INTERVAL YEAR TO MONTH

datatype, 15
intra-unit inline optimization,

Oracle Database
11g, 148

INVALIDATE keyword, 138
invoker rights model for stored

PL/SQL, 109
IS DANGLING predicate, 136

Index | 163

IS NULL/IS NOT NULL
syntax, 19

ISOLATION LEVEL
SERIALIZABLE
transaction control
function, 36

executing stored
functions, 122

%ISOPEN attribute, 41

J
Java language integration, 152,

155
data dictionary views, 155
publishing Java to

PL/SQL, 154
Java stored procedures (JSPs),

creating, 152, 154
JPublisher tool, 154

K
keywords

DISABLE, 113
RESULT_CACHE, 109

L
labels for loops, 33
language fundamentals of

PL/SQL, 2, 11
large object (LOB) datatypes, 18
LAST function, 69
LAST_DAY built-in function, 85
LEAST built-in function, 79, 83
LENGTH built-in function, 80
LIMIT function, 69
Linsley, Peter, 87
literals, 4
LN built-in function, 83
loadjava command-line

utility, 153
LOB (large object) datatypes, 18
local programs, declaring, 103

LOCALTIMESTAMP built-in
function, 86

LOCK TABLE statement, 36
locking rows in result sets, 43
LOG built-in function, 84
LOGOFF event, 112
LOGON/LOGOFF events, 112,

117
LONG datatype, 14
LONG RAW datatype, 15
loop labels, 33
loops

CONTINUE statement, 28,
31

in PL/SQL, 28, 33
LOWER built-in function, 80
LPAD built-in function, 80
LTRIM built-in function, 80

M
MAP method, 127, 130
mapping datatypes, 154
match modifiers for regular

expressions, 93
MEMBER keyword, 128
metacharacters supported by

Oracle, 88
methods

comparison, 130
constructor, 129
types of, 128

mixed notation
Oracle Database 11g, 103,

124
MOD built-in function, 84
modes of parameters, 101
MONTHS_BETWEEN built-in

function, 86
MULTISET built-in function, 76
MULTISET EXCEPT, 66
MULTISET function, 66, 68
MULTISET INTERSECT, 66

164 | Index

MULTISET UNION, 66
mutual recursion supported by

PL/SQL, 106

N
NAME keyword, 154
named notation, 103

Oracle Database 11g, 103,
124

named program units, 97, 109
NANY built-in function, 84
native compilation of

PL/SQL, 149, 151
NATURAL datatype, 12
NATURALN datatype, 12
NCHAR datatype, 15
NCHAR delimiter, 4
NCHR built-in function, 80
NCLOB datatype, 18
nested collections, 71
nested cursors, 49
nested records, 60
nested tables, 61, 62

adding/removing elements, 65
collection methods, 70
functions for, 65, 68
initializing, 64
syntax for declaring, 63

NEW_TIME built-in
function, 86

NEXT function, 69
NEXT_DAY built-in

function, 86
NLS (national character set)

datatypes, 15
NLS_INITCAP built-in

function, 80
NLS_LENGTH_SEMANTICS

keyword, 142
NLS_LOWER built-in

function, 81
NLS_UPPER built-in

function, 81
NLSSORT built-in function, 81

NOAUDIT event, 112, 117
NOCOPY option, 101
NOT FINAL

changing FINAL to, 138
marking parent object type

as, 128
specifying methods as, 132

NOT INSTANTIABLE
defining methods as, 132
restrictions on modifying

types, 139
type inheritance and, 128

NOT NULL constraint, 22, 63
NOT operation and Boolean

data, 17
NOT SUBSTITUTABLE,

changing table objects
to, 138

notations, parameter-
passing, 103

%NOTFOUND attribute, 41
NOWAIT keyword

LOCK TABLE statement
and, 37

SELECT FOR UPDATE clause
and, 44

NULL statement, 28
NULLs in PL/SQL, 17, 19

atomically null
collections, 63, 69

atomically null objects, 133
NUMBER datatype, 12
NUMERIC datatype, 12
numeric datatypes, 12, 14
numeric FOR loops, 29
numeric functions, 82
numeric literals, 4, 5
NUMTODSINTERVAL built-in

function, 76, 86
NUMTOYMINTERVAL built-in

function, 76, 86
NVARCHAR delimiter, 4
NVARCHAR2 datatype, 15

Index | 165

O
Object IDentifiers (OIDs), 126

encapsulated by REF
operator, 136

referencing persistent objects
using, 137

object types, 125
attribute specifications, 126
changing, 138, 139
comparison methods for, 130
initializing objects, 133
syntax for creating body, 127
syntax for creating

specification, 126
OIDs (Object IDentifiers), 126

encapsulated by REF
operator, 136

referencing persistent objects
using, 137

OPEN FOR statement, 45
cursor variables and, 48

optimization
intra-unit inline optimization

(Oracle Database
11g), 148

optimizing compiler (Oracle
Database 10g), 147

OR operation and Boolean
datatype, 17

OR REPLACE keywords
creating stored programs, 140
rebuilding existing collection

types, 63
rebuilding existing

packages, 119
ORA-00054 exception, 37
ORA-06511 exception, 40
ORA-1456 error, 36
Oracle Database 10g

compiler warnings, 147
defining quoting mechanism

for string literals, 4
native compilation, 149–152

nested table functions, 65, 68
optimizing compiler, 147
overloading programs, 105
regular expressions, 93
special named constants, 5

Oracle Database 11g
compound triggers, 115
conditional compilation, 142
CONTINUE statement, 28,

31
DBMS_SQL functions, 47
DBMS_UTILITY FORMAT_

ERROR_
BACKTRACE, 53

DISABLE (trigger), 113
firing order for triggers, 113
function result cache, 107
generalized invocation

syntax, 133
intra-unit inline

optimization, 148
mixed notation, 103, 124
named notation, 103, 124
native compilation, 149–152
REGEXP_COUNT, 87, 89
reserved words, 3
sequences, 34
SIMPLE_INTEGER

datatype, 13
subexp, 90, 91

Oracle object-oriented features
and PL/SQL, 125, 139

Oracle PL/SQL
Programming, 102

Oracle Regular Expressions
Pocket Reference, 87

Oracle8i, determining purity
levels of programs
in, 124

Oracle9i
CASE expression, 26, 27
datetime interval datatypes, 6,

17
native compilation, 149–152

166 | Index

ORA-nnnnn (list of built-in
exceptions), 51

ORDER method, 127, 130
OUT parameters, 101
overloading

member methods, 127
programmer-defined

constructors, 129
programs, 104, 105

OVERRIDING keyword, 132

P
package body, 118, 119

placing Java call specs in, 155
syntax for, 118

package data, 120
package specification, 118, 119

placing Java call specs in, 155
syntax for, 118

packaged functions, calling, 124
packages, 117, 122

built-in, 93–97
initializing, 121
referencing elements of, 120
structure of, 118, 119

PARALLEL_ENABLED
keyword, 140

parameters, 100, 105
default values for, 102
local programs and, 103
modes of, 101
passing arguments, 102
program overloading, 104,

105
PARTITION BY clause, 140
passing arguments in parameter

lists, 102
persistent objects, 125

referencing, 137
PGA (Process Global Area), 121
PIPELINED keyword, 140
PL/SQL vs. server-side Java, 152
PLS_INTEGER datatype, 12
PLSQL_CCFLAGS, 141

PLSQL_CODE_TYPE, 141,
151, 152

PLSQL_COMPILER_
FLAGS, 150

PLSQL_DEBUG, 141
PLSQL_NATIVE_C_

COMPILER, 150
PLSQL_NATIVE_LIBRARY_

DIR, 150
PLSQL_NATIVE_LINKER, 150
PLSQL_OPTIMIZE_

LEVEL, 141, 148
PLSQL_WARNINGS, 141, 145
positional notation, 103
POSITIVE datatype, 12
POSITIVEN datatype, 12
POWER built-in function, 84
PRAGMA AUTONOMOUS_

TRANSACTION, 8, 37
PRAGMA EXCEPTION_

INIT, 9
declaring exceptions, 52

PRAGMA INLINE, 9
PRAGMA keyword, 8
PRAGMA RESTRICT_

REFERENCES, 9, 124
PRAGMA SERIALLY_

REUSABLE, 9, 120
precedence, column/function

name, 125
predicates, trigger, 114
PRIOR function, 69
privileges and stored

PL/SQL, 109
procedures in PL/SQL, 98
Process Global Area (PGA), 121
program data, types of, 11
program overloading, 104, 105
propagating exceptions, 54, 56
publishing Java to PL/SQL, 154
purity levels of programs,

determining, 124
PUT_LINE procedure, 105

Index | 167

Q
q' programmer-defined delimiter

suffix, 4, 5
queries, single-row and

multirow, 45

R
RAISE_APPLICATION_ERROR

function, 53
raising exceptions, 53
RAW datatype, 15
RAWTOHEX built-in

function, 76
READ ONLY transaction control

function, 36
executing stored

functions, 122
REAL datatype, 12
records in PL/SQL, 56, 60

assigning, 58
declaring, 57
DML and, 59
nested, 60
referencing fields, 58

recursion, mutual, 106
REF CURSOR IN

parameter, 140
REF CURSORs

syntax for, 48
REF operator, 136
referencing

fields of records, 58
package elements, 120
persistent objects, 137

REFERENCING clause, 112
REFTOHEX function, 76
REGEXP, 89
REGEXP_COUNT function, 89
REGEXP_INSTR function, 81,

90
REGEXP_LIKE function, 81, 89

REGEXP_REPLACE
function, 81, 92

REGEXP_SUBSTR function, 81,
90

regular expressions, 93
RELIES_ON clause, 107
REMAINDER built-in

function, 84
RENAME event, 112, 117
REPEAT UNTIL loop

emulation, 31
REPLACE built-in function, 81
reserved words, 3
RESTRICT_REFERENCES

pragma, 9, 124
RESULT_CACHE, 107

keyword, 109
RETURN clause in functions, 99
RETURNING clause, 43, 74
RETURNING INTO statement

and BULK COLLECT
INTO clause, 74

REUSE SETTINGS
statement, 141

REVOKE event, 112, 117
RNDS (Read No Database State)

purity level, 124
RNPS (Read No Package State)

purity level, 125
ROLLBACK statement, 35

exceptions and DML, 56
executing stored

functions, 123
ROUND built-in function, 84,

86
row objects, retrieving, 137
%ROWCOUNT attribute, 41
ROWDTOCHAR built-in

function, 76
ROWDTONCHAR built-in

function, 76
ROWID datatype, 15
row-level triggers, 113

168 | Index

rows, locking, 43
%ROWTYPE attribute, 22

declaring records, 57
DML and, 59

RPAD built-in function, 81
RTRIM built-in function, 81

S
SAVE EXCEPTIONS

keywords, 73
SAVEPOINT statement, 35
scalar datatypes, 12, 18
scope of exceptions, 54
searched CASE expression, 26
searched CASE statement, 25
SELECT FOR UPDATE

clause, 43
SELECT INTO statement

assigning records, 59
BULK COLLECT INTO

clause and, 74
implicit cursors and, 42
manipulating objects, 134
read-only transactions and, 36

SELF parameter, 129
sequences, 34
sequential control

statements, 27
SERIALLY_REUSABLE

pragma, 9, 120
SERVERERROR event, 112, 117
SESSIONTIMEZONE built-in

function, 86
SET function, 66
SET ROW keywords, updating

database tables using, 60
SET TRANSACTION

statement, 36
executing stored

functions, 122
SGA (System Global Area), 107,

121

shared libraries
native compilation of PL/SQL

and, 149
SHUTDOWN event, 112, 117
side effects and purity

levels, 124
SIGN built-in function, 84
SIGNTYPE datatype, 12
simple CASE expression, 26
simple CASE statement, 25
SIMPLE_INTEGER

datatype, 13
SIN built-in function, 84
SINH built-in function, 84
SMALLINT datatype, 12
SOUNDEX built-in function, 81
SQL injection, 47
SQL statements, calling stored

functions from, 122, 125
SQL%BULK_

EXCEPTIONS.COUNT
method, 73

SQL%BULK_ROWCOUNT
attribute, 43, 75

SQL%FOUND attribute, 43
SQL%ISOPEN attribute, 43
SQL%NOTFOUND

attribute, 43
SQL%ROWCOUNT

attribute, 43
SQLCODE function, 55
SQLERRM function, 55
SQRT built-in function, 84
STARTUP event, 112, 117
statements in PL/SQL, 9
static cursors, 38
STATIC keyword, 129
stored functions, 122

calling from SQL
statements, 122, 125

named notation and, 103
requirements for calling in

SQL, 123

Index | 169

syntax for calling from
SQL, 123

(see also functions)
stored PL/SQL and

privileges, 109
stored programs, compiling, 140

natively, 149, 151
string functions, 78
string literals, 4
SUBSTITUTABLE keyword,

changing table objects
to, 138

SUBSTR built-in function, 81
subtypes (object)

single-inheritance model, 128
upcasting, 135

subtypes (scalar)
built-in, 12, 14
programmer-defined, 23

supertypes, 128
downcasting, 135
overriding, 132

SUSPEND event, 112, 117
SYS_EXTRACT_UTC built-in

function, 86
SYSDATE built-in function, 86
System Global Area (SGA), 121
SYSTIMESTAMP built-in

function, 86

T
TABLE built-in function, 77
table functions, 106
TAN built-in function, 84
TANH built-in function, 85
THE built-in function, 77
TIMESTAMP datatype, 15
TIMESTAMP WITH LOCAL

TIME ZONE
datatype, 15

TIMESTAMP WITH TIME
ZONE datatype, 15

TO_BINARY_DOUBLE built-in
function, 77

TO_BINARY_FLOAT built-in
function, 77

TO_CHAR built-in
function, 81, 86

TO_CHAR_TO_NCHAR built-
in function, 77

TO_CLOB_TO_NCLOB built-in
function, 77

TO_DATE built-in function, 77,
87

TO_DSINTERVAL built-in
function, 77, 87

TO_LOB built-in function, 77
TO_MULTI_BYTE built-in

function, 77, 82
TO_NCHAR built-in

function, 82
TO_NUMBER built-in

function, 77
TO_RAW built-in function, 77
TO_SINGLE_BYTE built-in

function, 77, 82
TO_TIMESTAMP built-in

function, 77, 78, 87
TO_TIMESTAMP_T2 built-in

function, 87
TO_YMINTERVAL built-in

function, 78, 87
transaction management, 34, 37

autonomous transactions, 8,
37

transient objects, 125
TRANSLATE built-in

function, 82
TRANSLATE_USING built-in

function, 78
TREAT operator, 135
triggers, 109, 117

compound, 115
disabling/enabling, 114
predicates, 114

TRIM built-in function, 82
TRIM procedure, 65, 69
TRUE value, 17

170 | Index

TRUNC built-in function, 85,
87

TRUNCATE event, 112
TRUST purity level, 125
truth tables, 17
%TYPE attribute, 22
TZ_OFFSET built-in

function, 87

U
UGA (User Global Area), 121
unconstrained subtypes, 23
UNDER keyword, 128
Unicode character datatypes, 15
UNINSTR built-in function, 78
UNISTR built-in function, 82
upcasting subtypes, 135
UPDATE event, 111
UPDATING trigger

predicate, 114
UPPER built-in function, 82
UROWID datatype, 15
USE ROLLBACK SEGMENT

transaction control
function, 36

User Global Area (UGA), 121
USER_OBJECTS view, 155
USER_STORED_SETTINGS

view, 150
UTC (Coordinated Universal

Time), 16
UTL MAIL package, 97
UTL_FILE package, 96
UTL_REF, 136

V
V$RESULT_CACHE, 109
V$TIMEZONE_NAMES

view, 17
VALUE operator, 137
VALUES keyword, inserting into

database tables using, 59
VARCHAR2 datatype, 14
variables, 11, 23

bind variables, 47
declaring, 19, 22
default values of, 21

VARRAYs, 61, 62
adding/removing elements, 65
initializing, 64
syntax for declaring, 63

W
warnings, compiler, 147
WHEN OTHERS clause, 55
WHERE CURRENT OF

clause, 44
WHILE loops, 31
WNDS (Write No Database

State) purity level, 124
WNPS (Write No Package State)

purity level, 124
WORK keyword, 35

X
x, 67

Y
y, 67

	Oracle PL/SQL Language Pocket Reference, Fourth Edition
	Contents
	Oracle PL/SQL Language Pocket Reference
	Introduction
	Acknowledgments
	Conventions

	PL/SQL Language Fundamentals
	PL/SQL Character Set
	Identifiers
	Boolean, Numeric, and String Literals
	Numeric Literals
	Datetime Interval Literals
	Delimiters
	Comments
	Pragmas
	Statements
	Block Structure

	Variables and Program Data
	Scalar Datatypes
	Numeric datatypes
	Character datatypes
	Unicode character datatypes
	Datetime datatypes
	BOOLEAN datatype

	LOB Datatypes
	Implicit Datatype Conversions
	NULLs in PL/SQL
	Declaring Variables
	Constrained declarations
	Constants
	Default values

	Anchored Declarations
	Programmer-Defined Subtypes

	Conditional and Sequential Control
	Conditional Control Statements
	IF-THEN combination
	IF-THEN-ELSE combination
	IF-THEN-ELSIF combination
	CASE statement
	CASE expression

	Sequential Control Statements
	GOTO
	NULL

	Loops
	Simple Loop
	Numeric FOR Loop
	Cursor FOR Loop
	WHILE Loop
	REPEAT UNTIL Loop Emulation
	EXIT Statement
	CONTINUE Statement (Oracle Database 11g)
	Loop Labels

	Database Interaction
	Sequences in PLSQL
	Transaction Management
	COMMIT
	ROLLBACK
	SAVEPOINT
	SET TRANSACTION
	LOCK TABLE

	Autonomous Transactions

	Cursors in PL/SQL
	Explicit Cursors
	Declaring explicit cursors
	Opening explicit cursors
	Fetching from explicit cursors
	Closing explicit cursors
	Explicit cursor attributes

	Implicit Cursors
	SELECT FOR UPDATE clause
	WHERE CURRENT OF clause

	Dynamic Cursors
	DBMS_SQL
	SQL Injection and Bind Variables
	Cursor Variables
	Cursor Expressions

	Exception Handling
	Declaring Exceptions
	Raising Exceptions
	Scope
	Propagation
	WHEN OTHERS clause
	SQLCODE, SQLERRM, and DBMS_UTILITY.FORMAT_ CALL_STACK
	Exceptions and DML

	Records in PL/SQL
	Declaring Records
	Referencing Fields of Records
	Assigning Records
	Records and DML
	Nested Records

	Collections in PL/SQL
	Declaring a Collection
	Initializing a Collection
	Adding and Removing Elements
	Nested Table Functions
	Collection Methods
	Collections and Privileges
	Nested Collections
	Bulk Binds

	Built-in Functions and Packages
	Built-in Functions
	Conversion functions
	String functions
	Numeric functions
	Datetime functions

	Built-in Regular Expression Functions
	Metacharacters
	REGEXP_COUNT (Oracle Database 11g)
	REGEXP_LIKE
	REGEXP_INSTR
	REGEXP_SUBSTR
	REGEXP_REPLACE
	Match modifiers

	Built-in Packages

	Stored Procedures and Functions
	Procedures
	Functions
	Parameters
	Datatype
	Mode
	Default values
	Parameter-passing notations

	Local Programs
	Program Overloading
	Forward Declarations
	Table Functions
	Function Result Cache
	Privileges and Stored PL/SQL

	Triggers
	Creating Triggers
	Trigger Predicates
	DML Events
	Compound DML Triggers
	DDL Events
	Database Events

	Packages
	Package Structure
	Referencing Package Elements
	Package Data
	SERIALLY_REUSABLE Pragma
	Package Initialization

	Calling PL/SQL Functions in SQL
	Calling a Function
	Calling Packaged Functions in SQL
	Column/Function Name Precedence

	Object-Oriented Features
	Object Types
	Type Inheritance
	Methods
	Member methods
	Static methods
	Constructor methods
	Comparison methods

	Methods in Subtypes
	Manipulating Objects in PL/SQL and SQL
	Upcasting and Downcasting
	REF operator
	VALUE operator
	DEREF operator

	Changing Object Types

	Compilation
	Compiling Stored PL/SQL Programs
	Conditional Compilation
	Compiler Warnings
	Optimizing Compiler
	Performing Native Compilation of PL/SQL
	Oracle9i Database
	Oracle Database 10g
	Oracle Database 11g

	Java Language Integration
	Example
	Publishing Java to PL/SQL
	Data Dictionary

	Index

